
Study Guide to Accompany Shari Lawrence Pfleeger's

Software Engineering: Theory and Practice

By
Forrest Shull and Roseanne Tesoriero

Table of Contents

TABLE OF CONTENTS.. 2

COURSE SUMMARY.. 3

COURSE LEARNING OBJECTIVES 5

CHAPTER 1: WHY SOFTWARE ENGINEERING?..6

CHAPTER 2: MODELING THE PROCESS AND LIFE-CYCLE.. 9

CHAPTER 3: PLANNING AND MANAGING THE PROJECT 12

REVIEW EXAM 1.. 15

CHAPTER 4: CAPTURING THE REQUIREMENTS.. 23

CHAPTER 5: DESIGNING THE SYSTEM 26

CHAPTER 6: CONSIDERING OBJECTS 29

REVIEW EXAM 2.. 32

CHAPTER 7: WRITING THE PROGRAMS.. 46

CHAPTER 8: TESTING THE PROGRAMS.. 49

CHAPTER 9: TESTING THE SYSTEM 52

CHAPTER 10: DELIVERING THE SYSTEM.. 55

REVIEW EXAM 3.. 57

CHAPTER 11: MAINTAINING THE SYSTEM..69

CHAPTER 12: EVALUATING PRODUCTS, PROCESSES AND RESOURCES ... 72

CHAPTER 13: IMPROVING PREDICTIONS, PRODUCTS, PROCESSES AND RESOURCES75

CHAPTER 14: THE FUTURE OF SOFTWARE ENGINEERING79

REVIEW EXAM 4.. 84

FINAL EXAM 96

Course Summary

This course is organized so as to, f i rst, provide a general introduction t o
software development and identify the important phases of any software project.
Then, each of the phases is examined in deta il, in order to give the reader a
picture of the current state of our understanding of software development.

Chapter 1 provides a general introduc t ion to the fiel d i n order to giv e some
sense of the magnitude and importance of software in today's world, t he kinds of
problems that make software development difficult, and an outline of how
software development is undertaken. Chapter 2 provides more detail on the ide a
of a “software pro cess”, that is, on t he various stages software goes throug h,
from the plan ning s tages to its deliv ery to the customer and beyond. Differe nt
models of the process are introduced, and the types of project features fo r
which each is most appropriate are discussed.

Chapters 3 through 10 follow, in order, the major phases in the lif e of a
software system. Chapter 3 deals with the planning stages: how resources an d
cost are estimated, how risks are ident i fied and planned, a nd how schedules ar e
created. Chapter 4 details how the prob l em to be solved by the system (not th e
system itself) is defined. This chapter concentrates on t he methods that are
necessary to fully capture the customer's requirements for the system, and ho w
to specify them in a way that will b e useful for future nee ds. Once the proble m
is sufficiently well understood, the system that solves i t can be designed .
Chapter 5 discusses the design of the software, introducing broad architectural
styles that may b e useful for diffe r ent types of syst ems as well as more
specific design characteristics. This chapter sketches the r oles of the people
involved in producing the design, as well as measures that can be used to assess
a design's quality. Chapter 6 explores an important design paradigm, Object -
Orientation, in mo r e detail and shows how the design not ation captures usef ul
in formation about several aspects of the problem and the resulting system.
Chapter 7 discusse s the general princ i ples by which a sy stem design is turn ed
into working code. Chapters 8 and 9 d i scuss testing, an i mportant activity f or
ensuring the quality of th e code, in some detail. An overview of different types
of testing, as well as testing tools and methods, are presented. Finall y,
Chapter 10 describes different types of training and documentation and what
should happen when the system is delivered to the c ustomer.

For many systems the responsibility of the developers does not stop at delivery.
Chapter 11 discusses system maintenance, that is, the pa r t of the life - cycl e
that comes after d elivery. The nature of the problems th at may arise wit h t he
system in this p hase, as well a s techniques and to ols for performin g
maintenance, are p r esented. Special e mphasis is placed on what can be done
during system development to minimize the effort required during maintenance.

Having presented a wide array of tool s and techniques th at can be use d duri ng
the software process, the course next presents some guidelines for how an
effective set of tools can be selected. Key to this idea of process improvement
is the concept of empirically evaluating the different tools availa ble. Chapter
12 presents the basic concepts behind empirical evaluation, including th e
different types of empirical studies. More specific guidelines are presented for
evaluations of products, processes, and resources. Chapter 13 furthe r
illustrates this d i scussion by presenti ng specific process i mprovement example s
in each of these ca t egories. Chapter 14 examines what progress has been made i n

better understanding software development and the consequ ences of developmen t
decisions, and presents some closing thoughts on important future directions for
software engineering.

Course Learning Objectives

This course should help you understand:

• What is encompassed by the field of study within computer science known as
“software engineering.” Your understanding of this field should include
its past contributions, a sense of what is understood today about software
development, and an overview of important and promising areas of future
research.

• What it means to be a software engineer:
o What kinds of activities are ne cessary for the production of a

software system;
o What the relationship with the customer should be like, and when to

involve the customer in the software development process to ensure
that the system meets his or her needs;

o What the relationship with other members of the development team
should be like, in order to achieve the complex, collaborative tasks
that are necessary for developing large systems.

• What it means to be a software engineering researcher:
o What kind of working relationship is needed with p ractitioners;
o What types of research problems are of interest to researchers, and

stand to give practical benefit to practitioners;
o A general idea of how software engineering research is done.

• What is meant by a “software life - cycle”:
o What the important p hases of software development are, and why each

is necessary;
o What types of intermediate products are produced in each phase;
o How the phases relate to each other and to the finished product;
o What type of activities a software engineer must complete in eac h

phase.
• Particular techniques and tools that have been applied to software

development, and the circumstances under which they may be more or less
appropriate.

• How software projects are planned and managed:
o What types of resources are involved in software development

projects;
o How risks are identified and assessed;
o How predictions and assessments are made.

• How software process improvement can be achieved. You should also have an
understanding of the role of empirical studies in process improvement,
includi ng the general types of empirical studies and the kinds of answers
each is able to give to software problems.

Chapter 1: Why Software Engineering?

Learning objectives:
After studying this chapter, you should be able to:

• Define what is meant by software e ngineering and describe the differences
between computer science and software engineering.

• Understand the track record of software engineering.
• Identify the characteristics of “good software”.
• Define what is meant by a systems approach to building softwar e and

understand why a systems approach is important.
• Describe how software engineering has changed since the 1970s.

Summary:
This chapter addresses the track record of software engineering, motivating the
reader and highlighting key issues that are exami ned in later chapters. In
particular, the chapter uses Wasserman's key factors to help define software
engineering. The chapter also describes the differences between computer
science and software engineering and explains some of the major types of
probl ems that can be encountered. The chapter explores the need to take a
systems approach to building software. The main emphasis of this chapter is to
lay the groundwork for the rest of the book.

Software engineers use their knowledge of computers and comp uting to help solve
problems. For problem - solving, software engineering makes use of analysis and
synthesis. Software engineers begin investigating a problem by analyzing it,
breaking it into pieces that are easier to deal with and understand. Once a
pr oblem is analyzed, a solution is synthesized based on the analysis of the
pieces. To help solve problems, software engineers employ a variety of methods,
tools, procedures and paradigms.

To understand where software engineering fits in, it is helpful to consider the
field of chemistry and its use to solve problems. A chemist investigates
various aspects of chemicals while a chemical engineer applies the chemists'
results to a variety of problems. In a similar manner, computer scientists
provide the theo ries and results that are used by software engineers to solve
problems.

The development of software involves requirements analysis, design,
implementation, testing, configuration management, quality assurance and more.
Software engineers must select a de velopment process that is appropriate for the
team size, risk level and application domain. Tools that are well - integrated
and support the type of communication the project demands must be selected.
Measurements and supporting tools should be used to sup ply as much visibility
and understanding as possible.

Software engineering has had both positive and negative results in the past.
Existing software has enabled us to perform tasks more quickly and effectively
than ever before. In addition, software has enabled us to do things never done
before. However, software is not without its problems. Often software systems
function, but not exactly as expected. In some cases, when a system fails, it
is a minor annoyance. In other cases, system failures can be life - threatening.
This has led software engineers to find methods to assure that their products
are of acceptable quality and utility. Quality must be viewed from several

different perspectives. Software engineers must understand that technical
quality and business quality may be very different.

Exercises:

1. What is software engineering and how does it fit into computer science?
2. What is the difference between technical and business quality? Explain why

each is important.
3. Give two or three examples of fail ures you have encountered while using

software. Describe how these failures affected the quality of the
software product.

4. Examine failures that have occurred in software that you have written.
Identify and list the faults and errors that caused each fail ure.

5. Look through several issues of software magazines (IEEE Computer and IEEE
Software are good choices) from the 1970's, 1980's and recent issues.
Compare the types of problems and solutions described in the older issues
with those described in the more recent issues.

Answer Guidelines:

1. To answer this question, you may find it useful to re - read Section 1.1.
Software engineering is the study or practice of using computers and
computing technology to solve real - world problems. Computer scientists
study the structure, interactions and theory of computers and their
functions. Software engineering is a part of computer science in that
software engineers use the results of studies to build tools and
techniques to meet the needs of customers.

2. Technical qual ity emphasizes the technical performance of a software

product. Often, it is measured by the number of faults, failures and
timing problems. Business quality focuses on the value of the software
product for the business. It is measured by return on inve stment (ROI).
ROI may be viewed very differently depending on the organization. In the
Brodman and Johnson (1995) study, different views of ROI were found with
the U.S. government and U.S. industry. The U.S. government views ROI in
terms of dollars save d while U.S. industry views ROI in terms of effort
savings.

Both technical and business quality are important. A software product may
have technical quality in that it performs the way it is intended or
specified to perform. But, if the software system is not used for
business functions, the system is not providing value to the business. In
this case, the system would have technical quality, but not business
quality. Similarly, a software product can provide functionality that is
vital to the business, yet the technical quality may be poor. Ideally, a
software product should have both technical and business quality.

You may find it useful to re - read Section 1.3.

3. Answers to this question will vary depending upon your experiences. In

your answer, you should include the following:

• A description of the failure. Explain how the system performed in a
way that was different from its required behavior.

• A list of quality characteristics that have been violated by the
failure.

You may find it useful to us e McCall's quality model (from Figure 1.5 of
the textbook) as a checklist. That is, use the items listed in the model
to ask questions about the failures you describe. For example, was the
failure that you experienced related to correctness? Were the res ults
incomplete or inconsistent? Did the failure affect the system's
usability? These are a sample of the questions that you may want to
consider.

4. Answers will be specific to the types of failures that you identify. The

purpose of this exercise is to m ake the distinction between errors, faults
and failures clear. Review the definitions for errors, faults and
failures. These definitions can be found in Sidebar 1.1 of the textbook.

5. Answers to this question will vary depending upon which articles are

in volved. To answer this question, you may want to use the seven key
factors that have altered software engineering (from Wasserman (1996) and
presented in Section 1.8 of the textbook) to make your comparison among
articles from the past and recent articles . In your comparison, cite
specific examples of how the problems and solutions have changed.

Chapter 2: Modeling the Process and Life-Cycle

Learning Objectives:
After studying this chapter, you should be able to:

• Define what is meant by the term “proce ss” and how it applies to software
development.

• Describe the activities, resources and products involved in the software
development process.

• Describe several different models of the software development process and
understand their drawbacks and when the y are applicable.

• Describe the characteristics of several different tools and techniques for
process modeling.

Summary:
This chapter presents an overview of different types of process and life - cycle
models. It also describes several modeling techniques and tools. The chapter
examines a variety of software development process models to demonstrate how
organizing process activities can make development more effective.

A process is a series of steps involving activities, constraints and resources
that pr oduce an intended output of some kind. A process usually involves a set
of tools and techniques. Processes are important because they impose
consistency and structure on a set of activities. The process structure guides
actions by allowing software engi neers to examine, understand, control, and
improve the activities that comprise the software process. In software
development, it is important to follow a software development process in order
to understand, control and improve what happens as software pr oducts are built
for customers.

Each stage of software development is itself a process (or a collection of
processes) that can be described by a set of activities. A process can be
described in a variety of ways, using text, pictures or a combination. I n the
software engineering literature, descriptions of process models are
prescriptions (or the way software development should progress) or descriptions
(the way software development is done in actuality). In theory, the two should
be the same, but in pra ctice, they are not. Building a process model and
discussing its subprocesses helps the team to understand the gap between the
two.

Every software development process model includes system requirements as input
and a delivered product as output. Some of the more common models include the
waterfall model, the V model, the spiral model and various prototyping models.
The waterfall model was one of the first models to be proposed. The waterfall
model presents a very high - level view of what goes on during d evelopment and
suggests the sequence of events a developer should expect to encounter. The V
model is a variation of the waterfall model that demonstrates how testing
activities are related to analysis and design. The spiral model combines
development ac tivities with risk management. No matter what process model is
used, many activities are common to all.

There are many choices for modeling tools and techniques. There are two major
categories of model types: static and dynamic. A static model depicts the
process, showing that the inputs are transformed to outputs. A dynamic model
can enact the process, so that the user can see how intermediate and final

products are transformed over time. The Lai notation is an example of a static
modeling notation. The systems dynamics approach has also been applied to
dynamically model software development processes.

Exercises:

1. Describe the process you use to get to ready for class or work in the
morning. Draw a diagram to capture the process.

2. Describe three softw are development life - cycle models. For each, name the
main activities performed, and the inputs and outputs of each activity.
For each give an example of the kind of software development project where
the life - cycle model would be well - suited, and an exa mple of where the
life - cycle model would be inappropriate; explain why.

3. What is the difference between static and dynamic modeling? Explain how
each type of modeling is useful.

4. Use the five desirable properties of process modeling tools and techniques
iden tified by Curtis, Kellner and Over(1992) and presented in Section 2.4
of the textbook to evaluate one process modeling tool or technique. You
may use an example from the book and/or consult outside sources.

5. Explain the difference between prescriptive and descriptive process
models. What is the purpose for each? When is it appropriate to use
each?

Answer Guidelines:

1. When answering this question, consider the definition of a process. Your
answer should include the following:

• the activities involved
• the s teps required to complete the tasks
• the inputs and outputs to each activity
• the constraints involved

You may find it useful to re - read Section 2.1.

2. Answers to this question will vary depending upon the life - cycle models

chosen. Section 2.2 describes seve ral life - cycle process models. Your
answer should include the activities, the inputs and the outputs involved
with each process model. In addition, you should provide examples and
reasons why a particular process model would be appropriate as well as
sit uations where a process model would be inappropriate. For example, if a
development project is highly risky (development team is inexperienced
with the domain, time pressures exist) a spiral life - cycle model would be
appropriate because development activit ies are combined with risk
management to minimize and control risk. However, if the development
project is low risk, a spiral model may not be the best choice.

3. A static process model describes the elements of a process. It depicts

where the inputs are t ransformed to outputs. A dynamic process model
enacts the process and allows the user to view how the products are
transformed over time. A static model is useful to identify the elements
of the process. A dynamic model may be useful to simulate how cha nges to
the process affect the outputs of the process over time.

For more details on static and dynamic process models, re - read Section
2.3.

4. Your answer to this question will depend upon which process modeling

technique or tool is chosen. Your answer s hould address the five
desirable properties of process modeling tools and techniques outlined in

Section 2.4. Does the tool or technique you are evaluating possess the
desirable characteristic? Which features of the tool or technique satisfy
the desirabl e property? Are there areas where the tool or technique lacks
support for a desirable property?

5. Descriptive models attempt to describe what is actually happening in the

process. Prescriptive process models attempt to describe what should be
happening wi th the process. For more details on prescriptive and
descriptive process models, you may find it helpful to re - read Section
2.2. In your answer to this question, use the reasons for modeling a
process (in Section 2.2) to describe how and when prescriptiv e and
descriptive models are useful. Can you think of cases where a
prescriptive process model may be inappropriate? How does a descriptive
model help in building a prescriptive model?

Chapter 3: Planning and Managing the Project

Learning Objectives:
After studying this chapter, you should be able to:

• Understand how to track project progress.
• Identify different communication styles of personnel and how these styles

affect team organization.
• Apply several effort and schedule estimation models.
• Identify risks and understand what is meant by risk management.
• Describe how process models and project management fit together.

Summary:
This chapter looks at project planning and scheduling by examining the
activities necessary to plan and manage a software dev elopment project. It
introduces some of the key concepts in project management, including project
planning, cost and schedule estimation, risk management, and team organization.
The chapter introduces notations that support project management activities. It
also presents several examples of estimation models used to estimate cost and
size.

The software development cycle includes many steps, some of which are repeated
until the system is complete and the customers and users are satisfied.
However, before committing funds for a software development or maintenance
project, a customer usually wants an estimate of how much the project will cost
and how long the project will take.

A project schedule describes the software development cycle for a particular
pro ject by enumerating the phases or stages of a project and breaking each into
discrete tasks or activities to be done. The schedule is a time - line that shows
when activities will begin and end, and when the related development products
will be ready.

A sy stems approach of analyzing and synthesizing can be used to determine a
project schedule. In the analysis of a project, a clear distinction between
milestones and activities must be made. An activity is a part of the project
that takes place over a perio d of time, whereas a milestone is the completion of
an activity -- a particular point in time. An analytical breakdown of the project
into phases, steps and activities gives software engineers and the customers an
idea of what is involved in building and ma intaining a system. The analytical
breakdown of the project is sometimes referred to as the work breakdown
structure. From the work breakdown structure, an activity graph depicting the
dependencies can be drawn. To make the activity graph more useful, th e
estimated time to complete each activity can be added to the graph. Then, the
critical path method (CPM) can be used to determine the minimum amount of time
it will take to complete the project, given the estimates of each activity's
duration. In additi on, the CPM reveals those activities that are most critical
to completing the project on time. There are many tools available to support
the tracking of a project's progress.

The number of people that will be working on the project, the tasks they will
perform, and the abilities and experience they must have to do their jobs
effectively are all factors that are used to determine a project schedule and
estimate the associated effort and costs. As the number of people on a project
increases, the number of possible lines of communication grows quickly.

Breakdowns in communication can affect a project's progress. The degree of
communication and the work styles of project team members should be considered
when deciding on the organizational structure of the team. There are several
choices for team structure, from a hierarchical chief programmer team to a
loose, egoless approach. Each has its benefits, and the appropriateness of each
depends to some degree on the uncertainty and size of the project.

One of the crucial aspects of project planning and management is understanding
how much the project is likely to cost. Cost estimation should be done early
and often, including input from team members about progress in specifying,
designing, coding and testing t he system. To address the need for producing
accurate estimates, software engineers have developed techniques for capturing
the relationships among effort and staff characteristics, project requirements,
and other factors that can affect the time effort a nd cost of developing a
software system. Many effort - estimation methods rely on expert judgment,
estimates based on a manager's experience with similar projects. Algorithmic
methods are based on data from past projects. With algorithmic methods, models
t hat express the relationship between effort and the factors that influence it
are generated. The models are usually described using equations, where effort
is the dependent variable, and several factors (such as size, experience, and
application type) are the independent variables. Most of these models
acknowledge that project size is the most influential factor. Machine learning
methods are another alternative to expert judgment and algorithmic methods.

Project managers take steps to ensure that their projects are done on time and
within effort and cost constraints. Managers must also determine whether any
unwelcome events may occur during development or maintenance, and make plans to
avoid these events or, if they are inevitable, minimize their negati ve
consequences. A risk is an unwanted event that has negative consequences.
Project managers engage in risk management to understand and control risks in a
project. As with cost estimation, the project team can work to anticipate and
reduce risk from th e project's beginning. Redundant functionality, team
reviews, and other techniques can help the team catch errors early, before they
become embedded in the code as faults waiting to cause failures. Cost
estimation and risk management can work hand in han d; as cost estimates raise
concerns about finishing on time and within budget, risk management techniques
can be used to mitigate or even eliminate risks.

Exercises:

1. Describe the process of getting a degree (bachelor's, master's or PhD) as
a work breakdow n structure. Draw an activity graph for the process. What
is the critical path?

2. Describe the organizational structure for your work environment. Classify
the working styles of several of your co - workers. What are the advantages
to this structure? Do y ou see any problems with the current structure?

3. Discuss two techniques for making a prediction for effort. In particular,
explain where during the development process the prediction is made, and
when (if at all) the prediction is repeated.

4. Any prediction generates an estimate, E, that can be compared eventually
to an actual value, A. Name two values that can be calculated from E and
A to help determine the accuracy of the estimating process. Define the
two values and discuss how the values for each are used to tell us that a
prediction is acceptable.

5. Describe two different size measures and the advantages and disadvantages
of using each.

Answer Guidelines:

1. The answer to this question will depend on the degree chosen and the
process involved. Your work breakdown structure should include phases,
steps, activities and milestones. You must also consider constraints such
as time limits and pre - requisites. For example, to get a PhD, you may have
to complete coursework, pass comprehensive exams, pass a prelim inary exam,
and defend your dissertation. There may be constraints, such as a two
year time limit to complete all coursework or all comprehensive exams must
be successfully completed before a preliminary exam can occur.

For more details on work breakdown structures, activity graphs and
critical paths, re - read Section 3.1.

2. Your answer will depend on your work environment. Use the descriptions of

organizational structures to characterize your work environment. In
Section 3.2, chief programmer teams are d escribed. Section 3.6 describes
several management structures such as matrix organizations and integrated
product development teams. When evaluating the structure, you should
consider whether the environment is highly or loosely structured. You
should c onsider the number of potential lines of communication.

When describing the working styles of your co - workers, keep in mind the
styles described in the chapter: rational introverts, rational extroverts,
intuitive introverts, and intuitive extroverts. Con sider how these
working styles affect communication in your work environment.

3. The chapter covers several different techniques for predicting effort.

Algorithmic models and machine - learning models are presented in Section
3.3. Project planning is covere d in Section 3.8.

4. Two measures of an estimate's accuracy are the mean magnitude of relative

error (MMRE) and the percent of projects with estimate values within x
percent of the actual value (PRED). The MMRE is the average of |E-A|/A
for each project. T he PRED(x) is n/N where n is the number of projects
with |E-A|/A < x and N is the total number of projects. When the MMRE <
0.25, the technique is considered fairly good. Some researchers would
like the MMRE to be less than 10%. For the PRED, a PRED(0.2 5) > 0.75 is
considered good. The PRED(0.25) criterion means that 75% of the project
estimates were within 25% of the actual values.

5. When estimating effort, it is often necessary to estimate size. Examples

of size measures include lines of code, function points and object points.
Object points can be calculated early in the process, but object points
are a coarse measurement. Lines of code are not available early in the
process, but are relatively easy to calculate. Function points can be
calculated ea rlier than lines of code and provide a richer system
description than object points.

Review Exam 1
1. If a system is being developed where the customers are not sure of what

they want, the requirements are often poorly defined. Which of the
following woul d be an appropriate process model for this type of
development?

a. prototyping
b. waterfall
c. V- model
d. spiral

2. The project team developing a new system is experienced in the domain.

Although the new project is fairly large, it is not expected to vary much
from app lications that have been developed by this team in the past.
Which process model would be appropriate for this type of development?

a. prototyping
b. waterfall
c. V- model
d. spiral

3. Which of the following are potential barriers to the consumer of a

reusable component ?
a. It is unclear where the responsibility for component failures lies.
b. Sometimes, it takes more time to find a reuseable component than it

would to build it.
c. It can be costly to understand the intended behavior of a reuseable

component.
d. a and b only
e. b and c only
f. a and c only
g. a, b and c

Suppose a library system is being developed. The system has three major
subsystems: one that handles the check - out/check - in transactions; one that
handles inventories; and one that handles reports. During the development o f
the system, several problems occur. Identify the problems as errors, faults
or failures.

4. In the code for calculating late fees, the fine_total variable is not

initialized.
5. While a librarian is attempting to add a new book title to the inventory,

the sy stem shuts down.
6. The requirements writer is unaware that a library card is not necessary

for the check - in transaction.
7. In the requirements document, a late fee is specified as $0.25 per day

with a maximum of $15. The code for calculating the late fee doe s not
check for the maximum fee.

8. Every evening at 11pm, the library system is supposed to perform a backup
of the daily transactions. The backup for Tuesday night did not occur.

9. Paul, a manager of the development team, decides to use a COTS product

deve loped by Reports 2 U, a third party vendor, as part of the inventory
subsystem. Which of the following are valid concerns:

a. The COTS product may no longer be supported by the vendor at some
later date.

b. In order for the COTS product to work with the new sys tem, a
modification or enhancement to the COTS product may be needed. The
vendor may be unwilling to make the change.

c. The COTS product may not function as specified.
d. a and b only
e. b and c only
f. a and c only
g. a, b and c

Jenna, a project manager, has developed a new technique for estimating
project size. She has been using the new technique on several projects. Her
estimates and the actual values for project size are shown below. The
criteria for a good estimating technique are: 75% of the estimates should b e
within 25% of the actual; and the mean magnitude of the relative estimate
errors should be less than 25%. Use the table of project size estimates and
the criteria given to answer the questions about Jenna's estimating
technique.

Project Estimate Actual
A 8060 8000
B 9000 10000
C 7000 7200
D 15000 13000
E 10000 9600

10. Given the table of estimates and actuals, what is the MMRE? Round to the

nearest 1/100.
a. 0.01
b. 0.05
c. 0.06
d. 0.07
e. 0.10

11. What is the PRED(.25)?

a. 0.05
b. 0.25
c. 0.33
d. 0.75
e. 1.00

12. Based on the crit eria for a good estimation technique and the estimate

data gathered so far, is the new technique a good one? (Yes/No)

Suppose Madeline, Andrew and Jason are three managers asked to estimate
effort required to build a 50,000 lines of code project. Each man ager uses a
different estimating technique.

13. Madeline uses the basic, Walston/Felix model. What will her estimate (in

person - months) be? Round to the closest month.
a. 185 person - months
b. 572 person - months
c. 620 person - months
d. 79634 person - months
e. 99134 person - months

14. Andrew uses the Bailey and Basili basic model. What will his estimate (in
person - months) be? Round to the closest month.

a. 65 person - months
b. 74 person - months
c. 1189 person - months
d. 1246 person - months
e. 206129 person - months

15. Jason uses expert judgment to arr ive at a 400 person - month estimate for

the project. Using the estimates of Madeline, Andrew and Jason, what is
the Delphi estimate for this project? Round to the closest month.

a. 220 person - months
b. 400 person - months
c. 720 person - months
d. 755 person - months
e. 10188 8 person - months

16. If Madeline's estimate is used and there are 12 team members working on

the project, how many months will the project take? Assume all team
members can work concurrently. Round to the closest month.

a. 15
b. 48
c. 52
d. 6636
e. 8261

17. Answer TRUE or FAL SE:

a. A development project is just beginning. An initial prototype of
the user interface has been completed. It would be appropriate to
use the COCOMO 2.0 Stage 1 at this point in the development.

b. A design has been chosen and development has begun. Detai led
information about the design is known. The COCOMO 2.0 stage 2 model
would be appropriate at this point in the development.

18. System A has 4 screens and 3 reports. Of the 4 screens, 3 are medium and

1 is difficult. Of the reports, 2 are medium and 1 i s difficult. System
B also has 4 screens and 3 reports. For system B, 2 screens are medium
and 2 are difficult. The 3 reports for System B are medium difficulty.
Which system has more new object points (COCOMO 2.0, stage 1 model)?

a. System A
b. System B
c. Sys tem A and B have the same number of new object points.
d. It is impossible to determine from the information given.

Consider the following descriptions of different employees' work styles.

19. Kristie seeks out evidence to support her decisions. She is current ly

considering rearranging the office space to make the working environment
more comfortable for the members of her team. While carefully considering
the objective aspects of the change are important to her, she is also
concerned about the opinions of the people who work for her. The members
of Kristie's team consider her to be a good listener and often consult her
when they have problems. Kristie's work style is:

a. rational extrovert
b. rational introvert
c. intuitive extrovert
d. intuitive introvert

20. Shane is an e fficient leader. He knows what he wants and relies on his

own experiences and logic to make decisions. He does not feel the need
for extensive information before making a decision. He is capable of
making fast decisions. Shane's work style would be des cribed best as:

a. rational extrovert
b. rational introvert
c. intuitive extrovert
d. intuitive introvert

21. Jessica is a developer who enjoys trying new technology. She often finds

inventive ways of incorporating new tools and techniques into the
development process. After trying a new design tool, she immediately
forms a positive opinion of the tool and attempts to get others to use the
tool. Jessica's work style could best be described as:

a. rational extrovert
b. rational introvert
c. intuitive extrovert
d. intuitive introver t

22. Matthew is considering a new process for code reviews. He carefully seeks

and reviews evidence to determine the potential benefits. He prides
himself on being accurate and thorough. Matthew rarely looks to others
for opinions. He would rather rely o n information that can be objectively
observed. Matthew's work style can be described as:

a. rational extrovert
b. rational introvert
c. intuitive extrovert
d. intuitive introvert

Activity graphs are used to depict the dependencies among the activities and
milestone s of a project. The nodes of the graph represent the milestones of
the project. The edges linking the nodes represent the activities. The
numbers adjacent to the edges represent the number of days required for the
activity. For example, in the activity graph below, it will take 6 days to
complete the activity starting at milestone A and ending in milestone C. Use
this activity graph to answer the following questions:}

23. Which of the following is a critical path from milestone A to milestone J?
a. ACFHJ
b. ACFIHJ
c. ABEGHJ
d. ADFHJ

24. What is the slack time for the activity starting at milestone C?

a. 7
b. 8
c. 15
d. 20

25. What is the length of the critical path identified in question 23?

a. 32
b. 40
c. 48
d. 55

26. What is the latest start time for the activity starting at milestone E?

a. 10
b. 18
c. 25
d. 40

27. What is the earliest start time for the activities starting at milestone

F?
a. 11
b. 19
c. 33
d. 37

28. Which milestones are precursors to H?

a. A
b. B
c. C
d. A and B
e. A and C
f. All of the above

29. If there are seven team members assigned to a project team, how many

potential lin es of communication are there?
a. 6
b. 7

B E G

C F H A J

D I

15

3

6 4

10 8

2

3

20

4
1

12

10

7

c. 21
d. 49

Determine whether or not each of the following statements is describing a
risk. Answer TRUE if the statement describes a risk, FALSE otherwise.

30. To catch defects early, requirements inspections have been incorpora ted

into the process.

31. The customers are not clear about what they want. The requirements may be
volatile.

32. The delivery of a subsystem being developed by another group may be

delayed and cause the whole project schedule to slip.

33. The project team is inex perienced. A requirement may be misunderstood and
designed incorrectly.

34. The development team is using a CASE tool for the first time on the

design.

35. To aid the customer in identifying requirements, several prototypes are
planned.

Review Exam 1 Answers
1. a, prototyping [Section 2.2]

2. b, waterfall [Section 2.2]

3. g; [Section 1.8]

4. fault [Sidebar 1.1]

5. failure [Sidebar 1.1]

6. error [Sidebar 1.1]

7. fault [Sidebar 1.1]

8. failure [Sidebar 1.1]

9. g; (COTS concerns)

10. d; MMRE = ((60/8000) + (1000/10000) + (200/7200) + (2000/13000) +

(400/9600)) / 5 = 0.07 [Section 3.3]

11. e; All estimates are within 25% of actual values. [Section 3.3]

12. Yes; using criteria MMRE < 0.25 and PRED(0.25) > 0.75. [Section 3.3]

13. a; 185 person - months (Walston/Felix) [Section 3.3]

14. b; 74 person - months (Bailey/Basili basic model) [Section 3.3]

15. a; 220 person - months is the average of the three estimates [Section 3.3]

16. a; 15 months (duration on Madeline's estimate) [Section 3.3]

17. COCOMO [Section 3.3]
a. TRUE
b. FALSE, stage 3 would be more appropriate than stage 2 because

detailed information about the design is known.

18. a; difficulty of reports is weighted more heavily than difficulty of
screens in the COCOMO 2.0 model. [Section 3.3]

19. d; intuitive introvert [Section 3.2]

20. a; rational extrovert [Section 3.2]

21. c; intuitive extrovert [Section 3.2]

22. b; rational introvert [Section 3.2]

The following table can be used to answer questions 23 to 28:

Activity Earliest
Start Time

Latest
Start Time

Slack

A 1 1 0
B 4 25 21

C 7 15 8
D 11 11 0
E 19 40 21
F 19 19 0
G 22 42 0
H 39 39 0
I 23 37 14
J(finish) 48 48 0

An activity label in the table should be read, “the activity beginning at
milestone <label>.” For example, the activity beginning at milestone B has
an earliest start time of 4.

23. d; ADFHJ is the critic al path [Section 3.1]

24. b; 8 is the slack time for the activity starting at milestone C. [Section

3.1]

25. c; 48 is the length of the critical path. [Section 3.1]

26. d; latest start time for the activity starting at milestone E is 40.
[Section 3.1]

27. b; earliest start time for the activity starting at F is 19 [Section 3.1]

28. e; B is not a precursor to H [Section 3.1]

29. c; (n(n - 1))/2= (7(6))/2 = 21 lines of communication [Section 3.2]

30. FALSE; This is a risk control. [Section 3.4]

31. TRUE; Requirements volatility is a r isk. [Section 3.4]

32. TRUE; Late delivery is a risk. [Section 3.4]

33. TRUE; Team inexperience is a risk. [Section 3.4]

34. TRUE; First use of a new technology is a risk.

35. FALSE; Prototyping is a risk control. [Section 3.4]

Chapter 4: Capturing the Requirements

Learning Objectives:
After studying this chapter, you should be able to:

• Explain why it is necessary to elicit requirements from software
customers, and the role of requirements in the software life - cycle;

• Identify the characteristics that make individual requirements good or
bad;

• Describe the types of requirements that should be included in a
requirements document;

• Describe the notations and methods that can be used for capturing
requirements, and the types of situations in which each may be
appropriate;

• Explain how and why requirements reviews should be done to ensure quality;
• Describe how to document requirements for use by the design and test

teams.

Summary:
This chapter focuses on capturing system requirements, an important component of
any model of the software development process. It is important to remember that
the purpose of requirements is to specify the problem that the system is
intended to solve, leaving the details of the solution to the system designers.
Formulating a useful set of requir ements will require working closely with:

• customers and users, so that everyone understands the requirements and
their goals

• designers, so that they can construct a good design from the requirements
specification

• testers, so that they can write test scr ipts to evaluate whether the
implementation meets the requirements

• documentation writers, so that they can write user manuals from the
specifications

Any requirements document should include both functional and non - functional
requirements. The functiona l requirements explain what the system will do, and
the non - functional ones constrain the behavior in terms of safety, reliability,
budget, schedule and other issues. Since mistakes made during the requirements
process can cause additional problems later i n the software life - cycle, the
complete set of requirements should be validated by checking for completeness,
correctness, consistency, realism, and other attributes. Measures reflecting
requirements quality are especially important since they may indicate useful
activities; e.g. when indicators show that the requirements are not well -
understood, prototyping of some requirements may be appropriate.

There are many different types of definition and specification techniques that
can be used for capturing requ irements. Some are static (e.g. data flow
diagrams), while others are dynamic (i.e. they include information about timing
and time - related dependencies). We can also think of techniques as object -
oriented or procedural. The techniques that are used on a particular software
development project should be chosen carefully, based on a number of factors.
For example, the specification techniques differ in terms of their tool support,
maturity, understandability, ease of use, and mathematical formality. Projec ts
vary in terms of size and scope. The right technique must be chosen based on the
needs of the current project, keeping these factors in mind. In some cases it

may be desirable to use a combination of techniques to specify the different
aspects of a syst em.

Because requirements typically contain many disparate elements that are
integrated into a comprehensive whole, requirements must be written in a way
that allows them to be linked and controlled. For example, a change to one
requirement may affect oth er, related requirements, and the techniques and tools
must support the changes to ensure that errors are caught early and quickly.

Exercises:

1. Most of a system's requirements specify that the system should do what it
is intended to do. Is it also appropri ate to specify that the system
should not do what it is not intended to do? If your answer is no, explain
why; if your answer is yes, give an example.

2. Describe the different consumers of software requirements i.e. the
different users, or types of users, o f a software requirements document).
For each consumer, explain how he or she would use the requirements, and
how the requirements should be documented to make them useful for this
consumer.

3. One source of problems in the requirements phase can be the rela tionship
between system developers and their customers. What are some negative
stereotypes customers may hold about developers? What could you, as a
developer on a project, do to minimize the impact of those negative
stereotypes?

4. Download and read the Rob ertsons' requirements definition template (from
http://www.atlsysguild.com). Write a short report in which you summarize
for a software developer how he or she can use the template to validate
requirements. Your report should address practical concerns abo ut how to
use the template in the requirements process. For example, you should
address questions such as: At what point in the requirements process can
the template be helpful? What activities are necessary in order to use the
template for validating requ irements? What skills will a developer have to
possess in order to apply the template effectively? What types of errors
and faults will the template help uncover?

5. Pamela Zave has proposed a classification scheme for organizing the
different types of rese arch that go on in the area of software
requirements (P. Zave (1997). “Classification of research efforts in
requirements engineering.” ACM Computing Surveys, 29(4): 315 - 321). Choose
one of the categories she presents and write a brief (one paragraph)
des cription of how research in this area is of use to software developers.
Track down one of the papers she cites as an example of research in this
category, and summarize the problem it addresses and the results it
presents.

Answer Guidelines:

1. An example of the latter type of requirement is a security requirement. In
this case, it is necessary to specify exactly what the system should NOT
allow a user or other system to do.

2. Requirements need to be used by:
a. The customer, who should check that the system desc ribed actually

matches his or her needs. For use by the customer, requirements
should be easy to understand, with a minimum of jargon, to
facilitate clear communication with the customer.

b. Designers, who need to construct a design of the system described in
the requirements. The requirements will need to be as complete,
clear, and correct as possible so that designs developed from it are

correct. Also, they will need to identify all of the constraints on
the system so that the design can correctly incorporat e them.

c. Testers, who need to develop test scripts. To support testers the
requirements should be as precise as possible, so that the values
that need to be tested and the expected system behavior are well -
specified.

d. Documentation writers, who will write th e user manuals based on the
requirements. As for the customer, the requirements should clearly
communicate the features of the system.

3. Use Table 4.5 as a starting point for your answer. For each point listed

on the table under the category of “How users s ee developers,” think about
whether or not these prejudices are in fact true, and if so, if there is a
reason they must be that way; if not, ask what you could do to change that
perception. For example, the first point, “Developers don't understand
operati onal needs,” is true in many cases; software engineers don't always
have extensive training in the customer's application domain or way of
doing business. But, a serious effort by the developer to learn about the
customer's needs in order to support the cu stomer is not only helpful for
reversing negative stereotypes, it is a prerequisite for building quality
software.

4. The template is useful during requirements reviews, but it can also be

helpful if given to the writers of requirements as a guide for what
i nformation should be included. The categories and items of the template
can be used as a checklist for ensuring that all of the appropriate issues
have been addressed and the correct information has been included in the
requirements document. The reviewer of the requirements will have to have
a sufficient understanding of the requirements in order to find the
pertinent information for each item of the template. The template will be
most helpful for finding defects of omission, that is, for identifying
types of information that should be included in the requirements but were
left out.

5. Answers will vary depending on the category chosen and papers

 selected.

Chapter 5: Designing the System

Learning Objectives:
After studying this chapter, you should b e able to:

• Explain the difference between a conceptual design and technical design,
and the reasons why each is useful for software development;

• Describe an overview of important design styles, techniques and tools, and
the conditions under which differen t choices may be appropriate;

• Identify the characteristics of a good design;
• Explain why validating designs is necessary, and a general overview of how

this task can be accomplished;
• Explain how to usefully document a design.

Summary:
This chapter focuse s on the process by which the requirements (the description
of what the customers want the system to do) are translated into a design (a
description of a system that will satisfy the customers' needs).

Of course, a good design is one that describes a syst em able to meet all of the
requirements. However, other high - level concepts are important, too. For
example, it is important that the design is adequate for the long - term intended
use of the system and embodies the following high - level notions of quality:

• Reusability: Are components of this design likely to be reused in later
systems? If so, are they of sufficient quality to be reused?

• Understandability: Is the design well structured and documented so that it
will be easy for maintainers (who may or may not include software
engineers who developed the system originally) to understand where in the
system modifications need to be made?

• Modifiability: Will the system described in this design be easy enough to
maintain after implementation is over? Or will chang es likely have
unintended consequences?

These are high - level concepts that try to describe design quality, but lower -
level measures can be helpful as well. Concepts such as modularity, abstraction,
coupling, and cohesion measure important characteristics of a design and allow
the formulation of general guidelines. For example, in most cases a system with
low coupling and high cohesion will be easier to understand and hence maintain
than a system without those characteristics. While it is not possible to sa y for
a given system exactly how much coupling or cohesion is appropriate, measurement
of these values may be useful in evaluating the quality of components, or for
predicting which components are likely to be costly to build or maintain.

Other important considerations for the system also need to be decided in the
design phase, rather than during implementation. Since it is important that the
system meets the customer's needs, it is appropriate for the designers to work
with users to decide how to design t he system's interface. This may require
developing several prototypes to show users the possibilities, to determine how
performance requirements can be met, or to evaluate the best “look and feel.”
Another example of a decision to be made at design time i s fault tolerance. One
goal of the design should be to anticipate potential faults that may occur and
design the system in ways that minimize disruption to the user.

This chapter also emphasizes that design is an activity that involves other
developers. O ther developers are an implicit factor in the design process, since

the choice of design method depends on who will have to read and understand the
design. Also, since designs are built from components, the interrelationships
among components and data must be well - documented. Cross - referencing may be
necessary to help explain which parts of the design affect what components and
data. Other developers should also participate in design reviews, evaluating the
design at several stages and making suggestions f or improvement. For all of
these reasons, it is essential that a design is documented clearly and
completely, with discussions of the options faced and the decisions made.

Exercises:

1. The following statements describe modules in a (hypothetical) program. F or
each, decide whether the module is likely to have a high or low degree of
cohesion. If cohesion is low, explain why.

a. Module “InventorySearchByID” searches the records in inventory
to see if any match the specified range of ID numbers. A data
structure is returned containing any matching records.

b. Module “ProcessPurchase” removes the purchased product from
inventory, prints a receipt for the customer and updates the
log.

c. Module “FindSet” processes the user's request, determine s the
set of items from inventory that match the request, and formats
the items into a list that can be shown to the customer.

2. What does it mean to say that a design review should be “egoless”? Why
are egoless reviews necessary? Suggest some s teps that may help achieve
egoless reviews.

3. Choose a software system that you use and for which there is some feature
of the interface that you, as a user, dislike. Briefly describe the
software and why you consider this feature of the interface to be a
pr oblem. Speculate as to whether the problem could have been avoided
during design. If so, what changes to the design process would have been
necessary?

4. Find a paper or book that deals with design patterns in more detail.
Summarize briefly one of the patte rns presented; explain what it is useful
for, when it can be used, and its effects on the rest of the program. What
are some of the difficulties you might expect to encounter if using design
patterns in practice?

5. Read the account by Nancy Leveson and Clark Turner of the Therac - 25
accidents (N. Leveson and C. Turner (1993). “An investigation of the
Therac - 25 accidents.” IEEE Computer, 26(7) (July): 18 - 41). Give a brief
summary of some of the important lessons that can be learned for design.

Answer Guidelines:

1.
a. Module “InventorySearchByID” can be expected to have high cohesion;

it performs only one type of functionality (a search).
b. Module “ProcessPurchase” can be expected to have relatively low

cohesion, since it involves very different functionalities: prin ting
a receipt for use by the user is logically quite different from
updating a data store.

c. Module “FindSet”can be expected to have relatively low cohesion,
since it invokes very different functionalities: parsing input, a
search through data, and output formatting.

2. “Egoless” reviews occur when criticisms are directed at the design process
and the design itself, not at the designers and other participants.
Egoless reviews are useful since they remind participants that they are
moving toward a common goal a nd keep them focused on the software under
review, rather than encouraging them to make excuses or defend themselves.

Egoless reviews enhance communication and allow more time to be spent
discussing the software itself. Egoless reviews can be facilitated b y any
measure that reminds participants that the software and not the
individuals are under discussion. Examples include making a statement of
the review goal at the beginning of the review, or making sure that
comments during the review remain centered on the software. Egoless
reviews are also facilitated by not inviting a representative of
management, to make sure that participants do not feel their performance
is being judged based on other participants' comments.

3. Answers will vary depending on software system chosen and interface
problem discussed. In any case, you should first make sure that the
problem you've selected is in fact a problem from the user's point of view
(i.e. one that results from a poorly defined interface). For example,
suppose you wo rk with a piece of software that, at certain times, will not
allow you to interact with the system while some computation is going on.
The fact that you have to wait for the computation to complete may not be
a user interface problem; the computation may s imply require a large
amount of time to complete the calculation. However, if the user is not
given a chance to cancel the computation after it has started, then a
frustrating problem can occur in which a user has decided that it is not
necessary to run th e computation at this point but has to wait for it to
complete anyway. Many such problems can be caught in the design phase if
resources are expended on user interface design and review.

4. The definition of a design pattern almost always includes context
in formation, a definition of the pattern itself, and tradeoffs associated
with its use, so be sure to address each of these points in your summary.
Design patterns suffer from some of the same difficulties that are
experienced in any reuse situation: it is often hard to recognize
situations that could benefit from reuse, and it is difficult to search a
repository of components (including patterns) to find the best match to
the current situation. As with any other type of reuse, developers may not
be sufficie ntly motivated to overcome these difficulties with design
patterns.

5. The Leveson and Turner paper contains many lessons that can be applied to
design. You should select some of these lessons, and cite experiences with
the Therac - 25 that support them. For ex ample, page 39 contains a list of
five basic software engineering principles that were violated in
development of the Therac - 25; which of these can be applied to design?
What kind of conditions did their absence from the development of the
Therac - 25 lead t o? You should use these principles as a starting point but
also identify other lessons. For example, what kind of lessons can be
found about reuse? About timing problems?

Chapter 6: Considering Objects
Learning Objectives:
After studying this chapter, yo u should be able to:

• Explain what is meant by object - oriented development, and how it differs
from other development paradigms;

• Understand what use cases are, discuss why they can be useful in software
development, and use them to describe system functiona lity;

• Use and understand UML diagrams;
• Explain how object - orientation is used for system design;
• Explain how object - orientation is used for program design;
• Explain how measurement is useful in object - oriented development, give

examples of some object - orien ted metrics, and explain the concepts those
metrics are capturing.

Summary:
This chapter describes the Object - Oriented (OO) approach to development.
Object - orientation organizes both the problem and solution according to several
key concepts:

• Identity
• Abstraction
• Classification
• Encapsulation
• Inheritance
• Polymorphism
• Inheritance

Taken together, these concepts give OO development several advantages that

other approaches do not possess. For example, OO does not impose a particular
development process but ca n be used with many lifecycle models. Perhaps most
importantly, OO allows a consistent terminology to be used across the stages of
the lifecycle, so that each stage can build more directly on the analysis done
in previous stages.

In OO development, first likely concepts and scenarios of system use are

determined. Then, during design, corresponding classes and objects are
identified, as are the interactions and relationships among them. This
information is represented in a series of models that are transla ted to an OO
programming language during the coding stage. Testing in OO development
requires the same activities as non - OO testing (e.g. unit testing, system
testing), although these activities are mapped to OO concepts such as classes
and class hierarchi es rather than functions and modules.

Use cases are a particularly useful way for representing system

functionality, and are well - supported by an OO approach. Aside from describing
information that is useful for many later stages of the development proces s,
use cases are effective for communicating with customers, system designers, and
testers.

OO solutions are often described using a notation support known as the

Unified Modeling Language (UML). UML provides diagrams that capture information
about the s ystem in a series of dynamic and static views. The UML diagrams
include workflow diagrams, object models, sequence diagrams, collaboration
diagrams, package diagrams, component diagrams, and deployment diagrams.

An OO approach to design, like any other ap proach, generally proceeds

through both system and program design phases. During system design, OO
developers describe the problem at a high level of abstraction. They must
identify classes and attributes in the system, find relations among the classes
and understand their type (generalization, association, aggregation, or
composition), and decide on the private or public interfaces of the classes.

In program design, OO developers expand the system design to describe the

proposed system in more detail. The y must decide on operation signatures and
object interfaces, choose construction paradigms (e.g. black - box versus white -
box reuse), and make decisions regarding user interfaces, data management, and
task management in the system. At this stage of design, d evelopers have a
number of design aids from which to choose, such as toolkits, patterns, and
frameworks.

For both system and program design, developers can use measurement to

provide further insight into the design process. OO metrics can be broadly
class ified as either size or design metrics; many specific metrics have been
defined in each category. There is no canonical best set of metrics; developers
must consider what is useful and feasible to measure in their context before
selecting which to use.

Exercises:
1. In what ways do the Object - Oriented characteristics of encapsulation and

information hiding support reuse? What kind of criteria would you use in
deciding whether to reuse a class in a new system?

2. Why is it useful to have separate phases for sys tem and program design?
3. In section 6.3, a set of questions was given for helping to find

potential problems with a set of use cases. Why is it important if two
different terms are being used to refer to the same entity?

4. You are designing a system to help r un a bookstore. Revenue for the store
comes from two distinct services: customers can purchase books, or bring
their books in for rebinding. You are considering making a separate class
for each service, both of which would be subclasses of a general “sale
item” class. What are the likely benefits of such an approach? Are there
any possible arguments against using inheritance in this case? Be sure to
specify what factors could influence your decision.

5. Section 6.7 discusses Chidamber and Kemerer’s metric of d epth of
inheritance. Why does it seem likely that a class that is deeper in the
hierarchy is harder to understand and maintain than one that is less
deep?

Answer Guidelines:

1. A good way to answer this question would be to turn it around and begin
by thinki ng of what would make for an ideal reuse situation. Some goals
could be: it should be easy for the developer to understand what
functionality is available to be reused, related functionalities should
be somehow reusable together, it should be easy to under stand how to
reuse the functionality, and the reusable components should be of high
quality. Then, address whether it would be harder or easier to achieve
these characteristics in an OO environment, and why.

2. System design gives developers a chance to solid ify the broad outlines of
the proposed system before having to decide on more specific details of
the implementation. Use the beginning of section 6.6 to understand what
decisions are reserved for program design. Then consider what negative

outcomes could result if developers began debating these issues earlier.
What factors, later in development, could make the answers to these
issues more or less relevant? Would it ever be a drawback to come to an
early decision on these issues, even if the system could b e implemented
without changing these decisions in later lifecycle phases?

3. The point of UML diagrams and use cases is to serve as a basis for the
eventual detailed design and implementation of the system. Using multiple
terms for the same entity hinders usi ng the use cases in this way because
it can cause confusion for people reading the diagrams, perhaps leading
them to believe that multiple, different entities are being referred to.
In your answer, try to think of an example of this situation, and
describe the likely results during system development in later lifecycle
phases.

4. The likely benefits involve shared functionality, perhaps for pricing and
revenue, which could be implemented once in the superclass and shared in
each of these two classes. On the ot her hand, there are enough
differences between the two services that it could be argued that joining
such dissimilar classes in an inheritance hierarchy would be confusing,
since very little functionality could be shared through the superclass.
(For exampl e, book sales might involve updating inventory, tracking the
space required for sale, and ordering more copies of a book when it is
close to being sold out. Bookbinding would not track inventory but would
need another set of methods to deal with expected d ue dates for the
service and scheduling the time of a suitable expert at the shop.) Many
factors should be taken into account to make the decision, but in this
case a particularly important one is the anticipated future needs of the
store. If it is possibl e that the range of sale items might increase in
the future, then it becomes more cost - effective to encapsulate the common
functionality in a superclass for sharing among the classes that might be
added.

5. To answer this question, think about how someone rea ding an OO program
knows where the specific definition of a method is located. If there is
no inheritance involved, a method is defined within the class to which it
belongs. But if that class is part of an inheritance hierarchy, the
method need not be defi ned in the class. Is there any indication of which
parent class contains the definition of a method? Can a method be
redefined multiple times within a particular hierarchy? How do those
factors contribute to the ease and accuracy with which a method
defini tion can be found?

Review Exam 21

The following questions are in reference to a hypothetical “Gas Station
Control System” (or GSCS) that will be used to help manage an American - style
gasoline or service station. Our hypothetical gas station basically pr ovides
two services:

• There is a small store that carries car parts. Inside the store is at
least one cash register, operated by a cashier who is an employee of the
gas station.

• There are a number of gas pumps, at which customers can park their cars,
int eract with the system to pay via credit card, and then pump their own
gas. Alternatively, the customer can pay for his or her gas via cash or
credit card by going into the store and paying directly to the cashier.

Thus the GSCS has two main classes of use rs. The first is the cashier, who uses
the GSCS to record purchases of car parts by customers. The GSCS must allow the
cashier to enter the type and number of parts purchased, then compute the total
purchase price and handle the payment. Customers purcha sing gasoline are the
second type of user. These customers interface with the system at the gas pump,
by specifying the amount and type of gas they will buy, paying either at the
pump or to the cashier, and then pumping the gas themselves.

The system als o has to interact with other automated systems to perform its
tasks. For example, in order to accept credit card payments, the GSCS must
interface with a system maintained by the credit card company. The credit card
system is responsible for checking tha t the customer's account is in good
standing and can accommodate the amount of the purchase, and for debiting the
customer's account and eventually reimbursing the gas station. The operation of
these external systems is beyond the scope of the GSCS, altho ugh the GSCS needs
to know how the external systems will communicate the success or failure of
their tasks.

The first step that the development team decides to undertake is to
create a requirements document to describe the system.

1. Which of the following statements best describe the benefits that the
development team may expect from the requirements process?

a. The requirements process can help team members understand how the
different types of functionality in the system relate to each other.

b. The requirement s process can help the team make programming
decisions, such as which is the best algorithm to use for
computations, at an early point.

c. The requirements process can help the team avoid omitting necessary
functionality.

d. a and b
e. a and c
f. b and c

1 The design diagrams for the GSCS used in this exam are ada pted from ones
created by Prof. Guilherme Travassos, of the Federal University of Rio de
Janeiro, and Jeffrey Carver, of the University of Maryland, College Park. The
diagrams are reprinted from Advances in Computers, volume 54, Travassos, Shull,
and Carve r, “Working with UML: A Software Design Process Based on Inspections
for the Unified Modeling Language,” 2001, by permission of the publisher
Academic Press London.

g. a, b, and c

2. Which of the following statements best describe the benefits that the
owner of the gas station may expect?

a. The requirements process can help the gas station owner think more
clearly about the set of functionality that should be included in
the GSCS.

b. The re quirements process can help the gas station owner and the
development team in communicating while discussing the system.

c. The requirements process gives the owner a specific statement of
exactly what the final system will do.

d. a and b
e. a and c
f. b and c
g. a, b, and c

3. The development team needs to pick a representation for the requirements.

Which of the following is a valid choice and rationale?
a. Data flow diagrams, since major system functionality will involve

data interfaces among hardware (e.g. cash register, pumps, credit
card readers).

b. Event tables, because the system will need to handle many events
happening concurrently (e.g. multiple customers at multiple gas
pumps).

c. Z, because it is easily understandable by the gas station owner and
will aid communication about the system.

d. Object - oriented specification, since this will make sure that the
system response is specified for every situation.

Mark the following TRUE if they belong in the requirements for the GSCS, and
FALSE if they do not.

4. How much documentati on the development team is required to produce.
5. The level of training that will be necessary for the cashiers to use the

system effectively.
6. The constraint that new customers, paying for gasoline, must be able to

learn how to use the system from simple directions posted at the gas
pumps.

7. The maximum cost of the system.
8. The hardware constraints that are necessary for interfacing with the cash

registers and gas pumps.
9. The format of the data received from the cash registers and gas pumps.
10. How mainten ance to the system will be performed.

11. Which of the following excerpts could be considered valid requirements?

a. “Once the payment process is complete, the system should respond in
the following way: If the user has paid the cashier directly, or has
paid at the pump but does not desire a receipt, then return to the
initial state. Otherwise, print a receipt.”

b. “A record should be kept for each cashier. Each record should store
the last name, first name, and employee ID number. The records
should be maintaine d in a linked list.”

c. “After the user has selected a payment option, the system should
check if the input is valid (i.e. a number between one and three).”

d. a and b only
e. a and c only
f. b and c only

g. a, b, and c

12. Which of the following are examples of valid nonfu nctional requirements?
a. “The display must update within three seconds after the user has

selected a payment option.”
b. “When car parts have been purchased, the count of inventory

remaining must be updated. A warning message will be displayed if
the count dr ops below the pre - set limit.”

c. “The user must replace the nozzle when finished pumping gas.”
d. a and b only
e. a and c only
f. a and c only
g. a, b, and c

A requirements review is undertaken to make sure that the requirements
adequately describe the system to be buil t.

In questions 13 through 17 , review the given excerpt from the requirements
and decide whether it is an adequate requirement or not. If it should be
rewritten, mark all the reasons that apply.

13. “After the payment process is complete, the relevant information should be

appended to a log file.”
a. This requirement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be re written; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

14. “The system should be constructed so that it will be easy to add new

functionality in the future.”
a. This requirement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

15. “The price of a gasoline purchas e is computed as the price per gallon for

the type of gas purchased, multiplied by the number of gallons purchased
(use two decimal points for representing fractions of gallons).”

a. This requirement should be rewritten; it is incorrect.
b. This requirement shou ld be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

16. “The system should be easy for new customers to use.”
a. This requi rement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

17. “The system should be available 24 hours a day, 7 days a week.”
a. This requirement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This re quirement should be rewritten; it is unverifiable.
e. This requirement is fine.

After the requirements review, 23 changes are made and a new version of the
requirements is created. This version was reviewed again, and 9 changes were
suggested. After these were changed, the latest version was shown to the
customer, who recommended 5 more changes.

18. Based on the above measurements, what can we conclude?

a. The requirements should be reviewed again, since there are still
defects being found.

b. The development team s hould begin working on the design based on
these requirements, since the number of changes is decreasing and
the requirements are becoming more stable.

c. It is impossible to say whether the requirements should be re -
reviewed without knowing the types of chan ges being made.

The development team decides that the next step is to create a conceptual and
then a technical design.

19. The conceptual design is felt to be of value because it will allow the gas

station owner to check:
a. What part of the system will be resp onsible for tracking the number

of car parts left in stock, and how it communicates with other parts
of the system.

b. How the current price of a gallon of gasoline is input to the
system.

c. What the screens that the user sees will look like, and what options
users will have.

d. a and b
e. a and c
f. b and c
g. a, b, and c

20. Which of the following are valid rationales for creating a separate

technical design?
a. The conceptual design will be useful for communicating with the gas

station owner but not very useful as a basis for implementing the
system.

b. The technical design should contain more information about the gas
pumps and their interfaces to the software.

c. The technical design should contain more detail about the likely
data structures that will be used.

d. a and b
e. a and c
f. b an d c
g. a, b, and c

21. The team has to decide on a general approach to creating the design. Which

are NOT valid choices and rationales?
a. Modular decomposition, because the system can be divided into

separate types of functionality that are relatively independent (for

example, the operation of the cashier versus the operation of the
gas pumps).

b. Outside - in design, because the set of user inputs is fairly well
understood.

c. Object - Oriented design, because the emphasis will mainly be on the
flow of data through the syst em (for example, how the central system
tracks purchases at each of the individual gas pumps).

d. a and b
e. a and c
f. b and c
g. a, b, and c

22. The team leader decides that the logical next step is to decide on an

architectural style for the system. Which of the foll owing are NOT valid
choices and rationales?

a. Object - Oriented, since the problem can be decomposed into several
different entities, each responsible for its own data access and
manipulation routines.

b. Pipe and Filter, since most of the required functionality involves
“piping” data between subsystems in preset ways.

c. Implicit Invocations, since the system is event - driven and depends
on the reliability of the subcomponents.

d. a and b
e. a and c
f. b and c
g. a, b, and c

23. TRUE or FALSE: Having decided on an architecture, the team leader decides

that the architecture should be frozen for the life of the project. That
is, once code design starts, no changes to the architecture will be
permissible so that there will be no inconsistencies. This is a reasonable
strategy.

The t eam decides to use an Object - Oriented methodology to create the design.
The figure above shows the first draft of the use case diagram for the gas
station system, created during high - level (conceptual) design. Use it to
answer questions 24 through 26.

24. Each of the ovals represents a particular high - level functionality

of the system, and
a. the lines between them represent the order in which they would

typically be executed.
b. a scenario should be construc ted for each, to show the details of

how the functionality would be supported by the system.
c. each should have a specified start condition.
d. A and B only.
e. B and C only.
f. A, B, and C

25. The notation of a triangle on the link between “Parking” and
“Billing Service s” signifies:

a. The functionality described in “Parking” occurs before the
functionality in “Billing Services.”

b. The entities “Customer” and “Credit Card System” provide input to
billing services, but are not involved with the system during
parking.

c. The funct ionality in “Parking” is a specific type of billing
service.

d. A and B only.
e. B and C only.
f. A, B, and C.

26. To check for any problems with the use cases, the team should:
a. Review the customer’s description of the “Credit Card System” to

see if it can participate in the appropriate way in the
functionality described in billing services.

b. Make sure that the expected start conditions for each use case are
well understood.

Gasoline

Parking

Maintenance Work

Pay by cash

Pay by credit card

Customer
Credit Card

System

Payment

Billing Services

Cashier

c. Combine “Cashier” and “Customer” into a single entity, since they
are involved in the same set of use cases.

d. A and B only.
e. B and C only.
f. A, B, and C

Part
Part_Code : long
Discount_Rate : float

Car_Maintenance
Price : float

Parking_Spot

Parking
Price : float

Gas
Price : float

Refuel
Gallons : float

price() : float

0..*

0..*

0..*

0..*

0..1

1

0..1

1
0..*

1

0..*

1

Periodic_Messages

Warning_Letters

Message
Text : text

Bill

Registered Customer
Account_number : number

0..*

0..*

0..*

0..* 1..*

0..*

0..*

1

Product

Current_Quantity : float
Price : float

price()

Inventory

1..* 1..*

1

Services
Discount_Rate : float

price() : float Purchase

1..*

1
1

0..*

1

0..*

1..*
1 1

1..*

Hash table

The figure above shows the first draft of the class diagram for the gas
station system, created during high - level (conceptual) design. Use it to
answer questions 27 through 29.

27. The relationship between classes “Message” and “Registered

customer” is that:
a. A registered customer can have no associated message.
b. Multiple messages can be associated with a registered customer.
c. A message might exist, but be associated with no registered

customer.
d. A and B only.
e. B and C only.
f. A, B, and C.

28. Which of the following statements are true about the GSCS, as
described in this class diagram?

a. Any subclass of “Service” must be associated with at least one
instance of “Purchase.”

b. A “Bill” includes exactly one “Purchase.”
c. An instance of “Inventory” could include no more than one “Part.”

d. A and B only.
e. B and C only.
f. A, B, and C.

29. Once the first draft of the class diagram is completed, the team
unde rtakes an internal review. Which of the following is a valid
criticism and rationale?

a. Classes “Parking” and “Car_maintenance” should be combined into a
single class, since they have the same attributes and inherit from
the same superclass.

b. Class “Hash ta ble” introduces too much detail into the model, since
that is an implementation detail that should not be decided in
conceptual design.

c. Method “price” does not need to be defined in class “Refuel” since
a method with the same name and interface is inherite d from
superclass “Services.”

d. A and B.
e. B and C.
f. A, B, and C.

 Gas Station Bill Cashier_terminal

display_message(text)

[information is
ok]

pay _monthlybycash(account number, amount)
Credit_bill(account number, amount)

IsClientRegistered(account number)

update_bill(amount, payment date)

get _bill()

 Registered
Customer

The figure above shows the first draft of a sequence diagram for the gas
station system. Use it to answer questions 7 and 8.

30. Which of the following statements are v alid interpretations of the

sequence diagram?
a. An object of type “Gas Station” attempted to send an

“IsClientRegistered” method to a “Bill” object, but was
unsuccessful.

b. The update_bill method is sent only if the information is OK.

c. An object of type “Bill” is created at the time a “Gas Station”
class sends the update_bill method.

d. A and B.
e. B and C.
f. A, B, and C.

31. TRUE or FALSE: A “Cashier_terminal” object will send a “credit_bill”
method only after having received a pay_monthlybycash method.

Once the conceptua l design is finished, the team undertakes an internal
review before sending it to the gas station owner.

32. The first draft of the conceptual design has the following

characteristics. Which are NOT appropriate?
a. It is written in a formal design notation, so that functionality can

be specified as precisely as possible.
b. It makes multiple references to the requirements document, in order

to provide the reason for including certain system components.
c. It uses some of the built - in features of C++, in order to bette r

make the argument for choosing this language for use in the
implementation.

d. a and b
e. a and c
f. b and c
g. a, b, and c

33. One problem found during design review was that functionality was omitted

from the design, even though it was included in the requirements. To
avoid this problem in the future, the development team should consider:

a. Choosing an improved notation for the design.
b. Adding configuration management to validate the requirements.
c. Investing more time in understanding the user's requirements.

Based on the conceptual design, the gas station owner responds with some
critiques of the user interface.

34. The main critique is that it will be hard for the cashiers to learn the

system because each screen is laid out differently. For example, on the
cashier's ini tial screen the options are laid out across the bottom. But
when the cashier is inputting data about the purchase of car parts, the
cashier's options are on the left side of the screen from top to bottom,
which is confusing. What the owner is really sayi ng is that the system
needs a consistent:

a. Metaphor
b. Mental model
c. Navigation rule
d. Look
e. Feel

The development team has decided to divide the system into three subsystems:

• A gas purchase subsystem, that takes care of customer interaction
with the gas pumps;

• A cashier subsystem, that interacts with the cashier to accept
payment for the purchase of car parts and gasoline;

• A tracking subsystem, that logs all purchases and tracks the
inventory remaining.

Each of these subsystems is expected to be a relatively c omplicated system in
its own right, but this design was chosen to minimize the communication among
subsystems. Both the gas purchase and cashier subsystems will communicate
with the tracking subsystem, but not with each other.

35. Which of the following best describes the design at this level of

abstraction?
a. High coupling, high cohesion
b. High coupling, low cohesion
c. Low coupling, high cohesion
d. Low coupling, low cohesion

36. TRUE or FALSE: The above combination of coupling and cohesion will make

programming and mai ntenance easier than if the system had been designed
otherwise.

37. In the initial design, the gas purchase subsystem is assumed to handle all

of the details of the purchase, and need send only a record containing the
amount of gas purchased, purchase price, and time of purchase to the
tracking subsystem. The relationship between the gas purchase subsystem
and the tracking subsystem is best described as:

a. Content coupled
b. Control coupled
c. Stamp coupled
d. Logically cohesive
e. Temporally cohesive
f. Functionally cohesive

38. The team leader realizes the team does not have much experience building

systems able to handle concurrency, as the gas purchase subsystem will
have to do. He therefore decides that the best way to proceed will be for
the team to develop a basic design for the subsystem that demonstrates
that concurrency can be handled, but does not include the full range of
customer functionality. The full range of functionality can be added once
the team is sure they have achieved an adequate design for handling
concu rrency. This strategy is an example of:

a. A prototype design
b. A throwaway prototype
c. Fault - tree analysis
d. Design by contract

39. The gas purchase subsystem needs to be able to handle the situation in

which the customer pays by credit card, but the remote system t hat
validates the credit card information is unreachable, perhaps because of a
temporary network failure. This situation is an example of:

a. An exception
b. A fault
c. A failure

40. It would be reasonable to design the system so that, the first time the

situation de scribed in question 39 occurs, the system responds by:
a. Retrying
b. Correcting
c. Reporting
d. Active fault detection
e. Passive fault detection

41. TRUE or FALSE: The team lead has monitored several design metrics over
the course of the desig n effort. As the design seems to be nearing
completion, he reviews his notes and notices that the metric for
“weighted methods per class” for class “Parking” has increased from 6 to
12, at the start of the detailed design phase. The next step should be to
split “Parking” into several classes, each with fewer methods.

42. After more work has been done on the design, the team leader decides it is

time to hold a program design review. Which of the following need NOT be
invited?

a. The requirements analysts
b. The deve lopers
c. The gas station owner
d. a and b
e. a and c
f. b and c
g. a, b, and c

43. Which of the following items of information are NOT appropriate for

inclusion in the final design?
a. The maximum cost the gas station owner is willing to pay for the

system
b. The layout of the c ashier's screen
c. The general layout of the network that supports communication within

and among subsystems
d. None of the above (all are appropriate)
e. a and b
f. a and c
g. b and c
h. a, b, and c

44. Which of the following items of information are NOT appropriate for

inclu sion in the final design?
a. The maximum amount of time the cashier can be made to wait for a

response from the system.
b. How the record of each day's transactions will be archived.
c. What happens if the network connections to any of the gas pumps are

severed.
d. None of the above (all are appropriate)
e. a and b
f. a and c
g. b and c
h. a, b, and c

Review Exam 2 Answers

1. e; Choice B is false because the requirements cover only what

functionality is implemented, not how. [Section 4.1]
2. d; Since both the developers and owner may revise their concepts of the

system as they learn more about it, the requirements should not be assumed
to describe the final system exactly. However, the requirements provide a
useful starting point for discussing these revisions over the course of
t he implementation. [Section 4.1]

3. a; Event tables are not well suited to concurrent environments; Z is very
formal and does not assist communication with people who are unfamiliar
with the notation; OO specifications do not contain any specific methods
fo r ensuring completeness. [Sections 4.4 - 4.5]

4. TRUE; The requirements specifications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

5. TRUE; The requirements specifications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

6. TRUE; The requirements specifications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

7. TRUE; The requirements specifications should contai n anything relevant to
how the system will interact with its environment. [Section 4.2]

8. TRUE; The requirements specifications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

9. TRUE; The requirements specif ications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

10. TRUE; The requirements specifications should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

11. e; Cho ice B contains details about how the system should be implemented
[i.e. using a linked list] which is outside the scope of the requirements.
[Section 4.1]

12. a; Choice B is a functional requirement; Choice C describes something
outside the control of the sys tem. [Section 4.1]

13. b and d; The phrase “relevant information” is ambiguous. (How is the
developer to know what information is relevant?) This ambiguity also
serves to make the requirement unverifiable. [Section 4.3]

14. d; The phrase “easy to add new function ality” is unverifiable. How is
“easy” defined? What types of functionality? [Section 4.3]

15. e; The formula described can be verified for correctness, and is not
ambiguous. [Section 4.3]

16. d; The phrase “easy to use” is unverifiable. The requirements should be
rewritten using a measurable criterion, e.g. that a new user must have
less than a certain number of faults, or that a new user should not take
more than a specified amount of time to complete the transaction. [Section
4.3]

17. c; The requirements needs to identify factors affecting availability. For
example, presumably the system does not work if there is a power failure.
But how about more mundane matters, such as routine maintenance? For
example, if receipts are printed, the paper spool presumably has to be
replaced some time. [Section 4.3]

18. c; Where possible, requirement measures should be categorized by
requirement type, so that it can be understood whether change and
uncertainty are product - wide or rest solely with a specific type of
requirement. [Sec tion 4.10]

19. g; The conceptual design addresses issues such as what the system looks
like to users, where the data comes from, and what happens to the data in
the system. [Section 5.1]

20. g; The technical design is better suited to describing issues such as
maj or hardware components and data structures. [Section 5.1]

21. c; Choice C is not valid since Object - Oriented design is not particularly
well - suited to describing data flow (although data - oriented decomposition
is). [Section 5.2]

22. f; Pipe and filter is not an ap propriate choice because it is not well
suited to interactive applications. Implicit invocation is not a good
choice because one of its drawbacks is that there is no assurance that a
component will respond to an event. [Section 5.3]

23. FALSE; Section 5.3 des cribes how this process is likely to be iterative.
24. E. No ordering is implied by the high - level use case diagram.

[Section 6.3]
25. C. The triangle implies specialization. That is, “Parking” is a

specific type of “Billing Services.” [Section 6.3]
26. D. Combining “Cashier” and “Customer” for the reason given in

choice C is not valid, since these actors can have unique roles in the
scenarios of which they are both part. [Section 6.3]

27. E. The cardinality notation for these two classes signifies that an
instance of cla ss “Message” can be associated with 0 or more “Registered
customer” objects, and an instance of class “Registered customer” can be
associated with 1 or more “Message” objects. [Section 6.5]

28. F. All of the choices are consistent with the class diagram. (A
su bclass inherits its parent’s associations.) [Section 6.5]

29. B. Methods and attributes with the same name in different classes
can still have different definitions and values, common to all instances
of the relevant class. [Section 6.5]

30. E. An object can call one of its own methods, as is indicated by the
notation of a method arrow beginning and ending with the same object.
[Section 6.5]

31. TRUE. Sequence diagrams convey chronological information, with methods
lower in the diagram occurring after those closer to t he top. [Section
6.5]

32. e; Conceptual design should be written in the customer's language and be
independent of the implementation. [Section 5.1]

33. b; Configuration management is concerned with demonstrating that documents
at each stage are compatible with doc uments from other stages; if there
were a closer correspondence between requirements and design less
functionality may have been lost. [Section 4.1]

34. d; The “look” of a system refers to “characteristics of the system's
appearance that convey information to the user.” [Section 5.4]

35. c; The components are loosely coupled since they are relatively
independent, with some interconnections. The components are cohesive since
all of their subcomponents will be directed toward (and presumably
essential for) supporting a particular functionality of the GSCS. [Section
5.5]

36. TRUE; Components are easier to understand if they are not intrinsically
tied to others (i.e. not tightly coupled). Similarly, cohesive components,
with logically related subcomponents, are generally ea sier to understand
than non - cohesive ones. [Section 5.5]

37. c; Components exhibit stamp coupling when a data structure is used to pass
information from one component to another. [Section 5.5]

38. a; Prototypes omit some details of functionality and performance, s o that
particular system aspects can be focused on. The omitted details are then
filled in later (unlike throwaway prototyping, in which the final system
is not built directly from the initial prototype). [Section 5.6]

39. a; The situation is not a fault or f ailure because it does not represent a
defect in the GSCS. It is an exception because it does not occur in normal
system operation. [Section 5.5]

40. a; Since the network problems may only be temporary, it makes sense to
restore the system to its previous stat e and try contacting the credit
card system again, before taking more extreme measures. [Section 5.5]

41. FALSE. The fact that the metric has increased is not enough information
to justify automatically splitting the class. It should be monitored
closely, and compared to other classes in the system and other classes
this team may have had experience with in the past. If the value is high
relative to other classes, it is a strong indication that the class may
be more difficult to implement than others. [Section 6.7]

42. c; The program design review allows designers to receive feedback from
other designers, analysts, and programmers. The customer of the system
does not have a role to play. [Section 5.7]

43. a; The design should describe the system in such a way that it c an be
validated whether the system will meet the requirements of the user. The
design should address how users interact with the system (including
display - screen formats) and network issues (such as topology). [Section
5.8]

44. d; The design should describe th e system in such a way that it can be
validated whether the system will meet the requirements of the user. The
design should address how users interact with the system (including
performance constraints, and how output are stored) and network issues
(inclu ding prescriptions for system integrity in the event of a network
failure). [Section 5.8]

Chapter 7: Writing the Programs
Learning Objectives:
After studying this chapter, you should be able to:

• Describe why programming standards and procedures are import ant for you
and for others.

• Define the two types of reuse, producer and consumer.
• Understand the characteristics that influence whether or not a component

can be reused.
• Understand how the design is used to frame the code.
• Understand what should be included as part of the internal and external

documentation.

Summary:
This chapter addresses issues in implementing the design to produce high -
quality code. Standards and procedures are discussed and some simple
programming guidelines are suggested. Ex amples are provided in a variety of
languages, including both object - oriented and procedural. The chapter contains
discussions of the need for program documentation and an error - handling
strategy. This chapter does not teach how to program; rather, it ex plains some
of the software engineering practices that should be kept in mind as code is
written.

The task of writing the programs that implement the design can be daunting for
several reasons. First, the designers may not have addressed all of the
idios yncrasies of the platform and programming environment; structures and
relationships that are easy to describe with charts and tables are not always
straightforward to write as code. Second, code must be written in a way that is
understandable not only to t he author when it is revisited for testing but also
to others as the system evolves over time. Third, programmers must take
advantage of the characteristics of the design's organization, the data's
structure, and the programming language's constructs whil e still creating code
that is easily reusable.

When writing code, the following items should be considered:

• organizational standards and guidelines
• reuse of code from other projects
• writing code to make it reusable on future projects using the low - level

design as an initial framework, and moving in several iterations from
design to code

• incorporating a system - wide error - handling strategy
• using documentation within programs and in external documents to explain

the code's organization, data, control and func tion, as well as design
decisions

• preserving the quality design attributes in the code
• using design aspects to suggest an implementation language.

Many corporate or organizational standards and procedures focus on the
descriptions accompanying a collectio n of programs. Program documentation is
the set of written descriptions that explain to a reader what the programs do
and how they do it. Internal documentation is descriptive material written
directly within the code. All other documentation is externa l documentation.
Internal documentation includes summary information to describe its data

structures, algorithms and control flow. With external documentation, the
summary information is provided from a system rather than component perspective.

Exercise s:

1. A stack is a data structure used to store elements. A stack is a last - in,
first - out data structure. That is, the last element placed on the stack
is the first element that can be removed from the stack. Elements can be
placed on or removed from the to p of the stack only. The allowable
operations for a stack are empty, full, push, pop and top.

The empty operation returns true if there are no elements in the stack,
false otherwise.

The full operation returns true if the stack is filled to capaci ty, false
otherwise.

The push operation takes an element as an argument and places the element
on top of the stack, if the stack is not full. If the stack is full, the
push operation returns an error.

The pop operation removes an element from the top of the stack, if the
stack is not empty. If the stack is empty, the pop operation returns an
error, otherwise, the top element is returned.

The top operation returns the element on the top of the stack without
removing the element from the stack, if the stack is not empty. The top
operation returns an error if the stack is empty.

Use an array to implement a stack data structure whose elements are
integers. The stack may contain a maximum of 100 elements. Keep in mind
the guidelines for programming style that were presented in this chapter.

2. One difficulty with reuse is selecting an appropriate component. Describe

a strategy for finding a reusable component. What guidelines or styles
would help in the process of selecting a component for reuse?

3. Explain the relationship between the design and implementation. Why is it

important to match the implementation to the design? What would you do to
keep the two consistent?

4. Consider a case where you have attempted to reuse code written by someone

else. Wha t kind of reuse was it? What problems did you encounter? How
did you resolve the problems? Are there any guidelines in this chapter
that may have helped to eliminate or mitigate the problems you
encountered?

5. When writing code, many people are usually i nvolved. Writing code usually

requires a great deal of cooperation and coordination. It is important
for others to be able to understand what you have written, why you have
written it, and how your work fits in with their work. For these reasons,
many o rganizations have coding standards and procedures. Using the
guidelines from this chapter, write a set of coding standards for a
language of your choice. Explain why you have included the standards you
have chosen.

Answer Guidelines:

1. To implement the st ack data structure, you should have followed the
guidelines presented in the chapter. You should use meaningful variable
names, provide good documentation of your code, use efficient algorithms,
and maintain good design principles (low coupling and high c ohesion).

2. When reusing a component, you may want to examine the documentation, look
at the test history, or test the software before you actually commit to
using it. It is important to understand whether or not you will have
access to the source code, to know who is responsible for changes and to
understand the limitations of the reusable component. In Section 7.3,
some of the key characteristics you should consider when selecting a
reusable component are described. Use this list of characteristics to
develop your strategy for selecting a component. How would the strategy
be different for white - box versus black - box reuse?

3. The code should implement the design. Design characteristics such as high
cohesion, low coupling and well - defined interfaces should be program
characteristics as well. It is important that the design and code match
for other activities such as maintenance and testing. To maintain
traceability, you may want to include design information in the program
comments. Configuration managemen t may also help to maintain consistency
between the code and design. Section 7.1 describes the relationship
between design and implementation.

4. There are many types of problems that may be encountered when you are a
consumer of a reusable component. The d ocumentation may be misleading or
incorrect. There may be missing functionality that is required by your
system. You must determine how to fit a reusable component into the
design of the new system. These are only a few of the problems that may
occur. Section 7.3 describes characteristics that should be considered
when reusing components. Based on the problems that you encountered and
the guidelines and programming styles described in this chapter, can you
describe ways that the reusable component coul d have been changed to
eliminate or mitigate the problems that you encountered?

5. To write the standards, make the guidelines presented in the chapter
operational. For example, to make the guideline of meaningful variable
names operational, you might have a standard which requires all variable
names to be greater than 5 characters and less than 10 characters. Your
reasons for including this standard might be that variable names less than
5 characters are cryptic and anything over 10 characters may be diffic ult
to remember.

Chapter 8: Testing the Programs

Learning Objectives:
After studying this chapter, you should be able to:

• Define different types of faults and how to classify them.
• Define the purpose of testing.
• Describe unit testing and integration te sting and understand the

differences between them.
• Describe several different testing strategies and understand their

differences.
• Describe the purpose of test planning.
• Apply several techniques for determining when to stop testing.

Summary:
Thi s chapter explores several aspects of testing programs. A distinction is
made between conventional testing approaches and the cleanroom method. A variety
of testing strategies are presented. The chapter also presents definitions and
categories of softwar e problems and discusses how orthogonal defect
classification can make data collection and analysis more effective. The
difference between unit testing and integration testing is explained. The
chapter also describes the need for a testing life - cycle and d escribes how
automated test tools and techniques can be integrated into it.

Testing is not the first place where fault - finding occurs; requirements and
design reviews help to ferret out problems early in development. But testing is
focused on finding fau lts, and there are many ways to make testing efforts more
efficient and effective. It is important to understand the difference between a
fault (a problem in the requirements, design, code, documentation or test cases)
and a failure (a problem in the func tioning of the system). Testing looks for
faults, sometimes by forcing code to fail and then seeking the root cause. Unit
testing is the development activity that exercises each component separately;
integration testing puts components together in an org anized way to help isolate
faults as the combined components are tested together.

Testing is both an individual and a group activity. Once a component is
written, it can be inspected by some or all of the development team to look for
faults that were not apparent to the person who wrote it. The research
literature clearly shows that inspections are very effective at finding faults
early in the development process. But it is equally clear that other techniques
find faults that inspections often miss. So it is important for team members to
work with the team in an egoless way, using the many available methods, to find
faults as early as possible during development.

The goal of testing is to find faults, not to prove correctness. Indeed, the
absence of fa ults does not guarantee correctness. There are many manual and
automated techniques to help find faults in code, as well as testing tools to
show how much has been tested and when to stop testing.

Exercises:

1. Examine faults from code that you have written . For each fault, identify
the type of fault (as in Section 8.1, Types of Faults) and classify the
fault using a defect classification. Provide the details of the defect
classification used. (You may use the IBM defect classification presented

in Table 8.1 or the one from HP illustrated in Figure 8.1.) Describe any
difficulties encountered in classifying the faults.

2. Based on the faults identified in the previous question, which type of
fault occurred most frequently? How might you change your software
development approach to eliminate or reduce the occurrence of this type of
fault?

3. Describe the differences between unit and integration testing. Give the
goals for each type of testing and describe when and how each should
occur.

4. Describe the differences b etween object - oriented and traditional testing.
5. Choose a piece of code and write test cases for the code to satisfy the

requirements of statement testing. Write the test cases for all - uses
testing. Which testing strategy is stronger? Which strategy requi res more
test cases?

Answer Guidelines:

1. Chapter 8 describes many different types of faults. The purpose of this
exercise is to give you a better understanding of how these descriptions
can be used to identify and understand faults in actual code. It wil l
also help you to understand the difficulties in classifying defects.
Sometimes it is difficult to classify faults, especially when the defect
classification is not orthogonal. The chapter presents two defect
classifications. You may use one of th ese classifications or any other,
reasonable classification. Be sure your answer clearly describes the
defect classification you are using. When answering this question first
decide which type of fault you have found. Then, determine if the fault
is one of omission or commission. Finally, based on the fault type and
your classification of omission or commission, use your defect
classification to classify the fault. Did you have difficulties in
determining the fault type? Did any of your faults seem to fit in
multiple categories?

2. Answers to this question will vary depending on your fault profile. Your
fault profile can be used to identify areas of improvement for yourself.
Based on your profile, which type of fault had the highest frequency?
Would an y of the techniques described in this chapter or previous chapters
be useful in helping you to reduce the frequency of this type of fault?
Which type of fault occurs least frequently? Have you done anything in
the past to prevent this type of fault from o ccurring?

3. The main purpose of unit testing is to make sure that the component is
functioning properly. The component is tested in isolation to make sure
that the inputs produce the expected outputs. The main purpose of
integration testing is to verify t hat the system components work together
as specified by the design. Integration testing occurs after unit
testing. Sections 8.3 and 8.4 describe unit and integration testing in
greater detail.

4. Section 8.5 addresses the difference between testing object - or iented
systems and traditional systems. Most of the techniques used for
traditional testing also apply to object - oriented systems. Object -
oriented programs have special characteristics that need several
additional steps. Some of the characteristics that must be considered
with OO programs that may not be included with traditional testing
techniques are: missing objects, unnecessary classes, missing or
unnecessary associations, or incorrect placement of associations or
attributes. Test case adequacy must also be considered more carefully
with OO systems. As Perry and Kaiser (1990) found, when a subclass is
added or modified, the inherited methods from the ancestor superclasses
must be retested. As noted by Graham (1996a), objects tend to be small

and lo w in complexity. However, the complexity often is pushed to the
interfaces among components. This shift of complexity means that unit
testing may be easier with OO systems, but integration testing must be
more extensive.

5. Section 8.3 describes the differen t types of test strategies for test
thoroughness. Statement testing and all - uses testing are two of the
options described. With statement testing, every statement is executed at
least once in a test case. With all - uses testing, the test set includes
at least one path from every definition to every use that can be reached
by the definition. In general, all - uses is stronger and requires more
test cases than statement testing.

Chapter 9: Testing the System

Learning Objectives:
After studying this chapt er, you should be able to:

• Describe how system testing differs from unit and integration testing.
• Classify tests as function testing, performance testing, acceptance

testing or installation testing.
• Understand the purposes and roles of function testing, p erformance

testing, acceptance testing, and installation testing.
• Define software reliability, maintainability and availability.
• Describe different techniques for measuring reliability, maintainability

and availability.
• List the different types of test do cumentation and know what items belong

in test documentation.
• Understand the special problems associated with testing safety - critical

systems.
• Describe the principles of Cleanroom and how it differs from conventional

testing.

Summary:
This chapter looks at the system testing process: its purpose, steps,
participants, techniques and tools. The chapter describes the principles of
system testing, including reuse of test suites and data, and the need for
careful configuration management. The concepts intro duced include function
testing, performance testing, acceptance testing and installation testing. The
chapter examines the special needs of testing object - oriented systems. Several
test tools are described, and the roles of test team members are discusse d. The
reader is introduced to software reliability modeling. The issues of
reliability, maintainability and availability are discussed. The chapter
describes how to use the results of testing to estimate the likely
characteristics of the delivered prod uct. Several types of test documentation
are described.

Testing the system is very different from unit and integration testing. When
unit testing components, the developer has complete control over the testing
process. The developer creates the test dat a, designs the test cases, and runs
the tests. When integrating components, the developer sometimes works
individually, but often collaborates with a small part of the test or
development team. However, when testing a system, the developer works with the
entire development team, coordinated and directed by the test team leader.

The objective of unit and integration testing is to ensure that the code
implements the design properly. In system testing, however, the objective is to
ensure that the system do es what the customer wants it to do. Test procedures
should be thorough enough to exercise system functions to everyone's
satisfaction: the user, customer, and developer.

The steps involved in system testing include function testing, performance
testing, acceptance testing, and installation testing. Each step has a
different focus. Function testing checks that the integrated system performs
its functions as specified in the requirements. Performance testing compares
the integrated components with the n onfunctional system requirements.
Acceptance testing assures the customers that the system they requested is the

system that was built for them. Installation testing allows users to exercise
system functions and document additional problems that result i n the actual
operating environment.

Often, a system is tested in stages or pieces. System testing must also take
into account the several different system configurations that are being
developed. A system configuration is a collection of system componen ts
delivered to a particular customer. During testing, configuration management,
the control of system differences to minimize risk and error, is especially
important. Configuration management helps to coordinate efforts among the
testers and developers.

Techniques such as Cleanroom require a great deal of team planning and
coordination, in developing the box structures and in designing and running the
statistical tests. And the activities involved in acceptance testing require
close collaboration with customers and users; as they run tests and find
problems, the team must quickly determine the cause so that corrections can
allow testing to proceed. Thus, whereas some parts of development are solitary,
individual tasks, testing the system is a collabora tive, group task.

Exercises:

1. How does system testing differ from unit and integration testing?
2. Explain the purposes and roles of function testing, performance testing,

acceptance testing, and installation testing.
3. What is the difference between verificat ion and validation? Which types of

testing address verification? Which types of testing address validation?
4. Describe the principles of Cleanroom and how it differs from conventional

testing.
5. Read the press release and failure report for the Ariane - 5 Fligh t 501. An

electronic copy of the failure report is available at
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html . The
joint ESA/CNES press release is avail able at
http://www.esrin.esa.it/htdocs/tidc/Pres/Press96/pres19.html . What kinds
of tests might have exposed the problems that caused each of the failures?

Answer Guidelines:

1. The emphasis for unit and integration testing is to make sure the code
implements the design properly. With system testing, the focus is shifted
to the customer. System testing looks to verify that the system
implements the requirements properly.
For more details on the differences, re - read Section 9.1.

2. The purpose and roles of the different types of testing are presented
throughout the chapter. For each type of system testing mentioned,
describe the purpose and role. Explain when in the system testing pr ocess
each type of test should occur. Describe how and why each type of test is
performed.

3. A verified system implies that the system operates the way the
designers intended it to operate. A validated system implies that the
system meets the customers ' expectations. The various types of unit and
integration tests focus on verification. System testing focuses on
validation. Review the descriptions of the types of unit and integration
tests and the types of system testing to determine which tests contr ibute
to verification and validation.
Section 9.1 contains more information on verification and validation.

4. Cleanroom reflects the ideas used in the manufacturing of chips. The goal
is to keep faults at a minimum. For software, the goals are to certify
so ftware before unit testing and to produce as few faults as possible.

With Cleanroom, verification replaces unit testing. Cleanroom also makes
use of statistical testing.
Section 9.9 describes the principles and the advantages and drawbacks to
the Cleanro om process in greater detail. Use this information to compare
the Cleanroom process against traditional testing.

5. The most obvious failure from the Ariane - 5 flight was the explosion of the
space rocket itself. The failure report describes additional fault s and
failures that contributed to the explosion. Use the descriptions of the
types of testing in this chapter to determine which tests may have
uncovered the faults. Explain how the testing would have uncovered the
fault. Be sure to consider whether or not the type of test you describe
would have been feasible.

Chapter 10: Delivering the System

Learning Objectives:
After studying this chapter, you should be able to:

• Describe different types of training and training aids.
• Understand the differences be tween user and operator training.
• Describe special training needs and guidelines for training.
• Describe the types of documentation needed for training.

Summary:
This chapter discusses the need for training and documentation, two issues key
to successfully transferring the system from the developer to the user. The
chapter presents several examples of training and documentation that could
accompany a software system.

Many software engineers assume that system delivery is a formality. However,
even with tu rnkey systems (where the developers hand over the system to the
customer and are not responsible for its maintenance), delivery involves more
than putting the system in place. It is the time during development when the
development team helps users to unde rstand and feel comfortable with the
product. If delivery is not successful, users will not use the system properly
and may be unhappy with its performance. In either case, users are not as
productive or effective as they could be, and the care taken to build a high -
quality system will have been wasted.

As the system is designed, aids that help users learn to use the system are
planned and developed. Accompanying the system is documentation to which users
refer for problem - solving or further information . Training and documentations
should be done from two perspectives: the user and the operator. Sometimes, the
same person is both user and operator. However, user and operator tasks have
very different goals, so the training for each job should emphasiz e different
aspects of the system.

Training can be done in many ways. No matter how training is provided, it must
offer information to users and operators at all times, not just when the system
is delivered. At some time, if users forget how to access a file or use a new
function, training includes methods to find and learn this information. Formal
documentation, icons and on - line help, demonstrations and classes, and expert
users are examples of training aids that may be provided.

Exercises:

1. Examine t he documentation and training resources for a software system of
your choice. What resources are available to the users? What resources
are available to the operators?

2. What kinds of training aids and resources would be useful for users with
little or no computer experience? Give examples of aids or documentation
meant for novice users.

3. Suppose a system has functions that are rarely executed by users or
operators. What types of resources would be appropriate for these rarely
used functions?

4. Often, the tr aining and documentation needs for novice users are very
different from the needs of expert users. Give examples of cases where
training aids or documentation for one user group are inappropriate for
the other.

5. Think about experiences you have had with tr aining and documentation
resources. Are there any cases where these aids have interfered with your
usage of the software system? If so, how would you change the
documentation or training aid?

Answer Guidelines:

1. This exercise is intended to help you to i dentify the different training
and documentation resources available with software systems. Use the
descriptions of training and documentation presented in this chapter to
help you identify the resources available with the system of your choice.
You shoul d be able to distinguish between resources that are meant for
users and those resources that are meant for operators.

2. In this exercise, you should focus on the training and documentation aids
appropriate for novice users. Throughout the chapter, there ar e
descriptions of various resources. When reviewing these descriptions,
think about how each resource described might be useful for an
inexperienced user. Try to find examples of support for novice users in
software systems that you have used.

3. The knowle dge gained in training can be forgotten easily over time if the
system functions are not exercised regularly. There are several training
options that may be useful in this situation. You should review the
different resources described throughout the chap ter and comment on the
resources that would be useful in this situation. In addition, you may
want to include examples from your own experiences.

4. To answer this question, review the training aids and documentation
examples presented throughout the chapter . As you review the resources,
think of examples that you have experienced in software that you have
used. Categorize these examples as resources for novices or resources for
expert users.
Use this information to describe reasons why resources for one g roup may
not be appropriate for the other user group. For example, “wizards” may
be useful for novices; however expert users may find them cumbersome to
use. Similarly, documentation meant for expert users may be
incomprehensible to novice users.

5. The ans wers to this question will vary based upon your experiences with
training aids and resources. Use the chapter descriptions to help you
identify different types of training aids. Have you encountered resources
that have hindered you use of a software syst em? For example, was the
user documentation incorrect? Were there aids that were meant for novice
users that you were unable to disable? Was information missing from the
documentation that made the system impossible to use? Once you have
answered these questions, think about things that you would do to
eliminate some of the problems that you have encountered.

Review Exam 3

The following questions are in reference to a hypothetical "Gas Station Control
System" (or GSCS) that will be used to help manag e an American - style gasoline or
service station. Our hypothetical gas station basically provides two services:

• There is a small store that carries car parts. Inside the store is at
least one cash register, operated by a cashier who is an employee of the
gas station.

• There are a number of gas pumps, at which customers can park their cars,
interact with the system to pay via credit card, and then pump their own
gas. Alternatively, the customer can pay for his or her gas via cash or
credit card by going i nto the store and paying directly to the cashier.

Thus the GSCS has two main classes of users. The first is the cashier, who uses
the GSCS to record purchases of car parts by customers. The GSCS must allow the
cashier to enter the type and number of part s purchased, then compute the total
purchase price and handle the payment. Customers purchasing gasoline are the
second type of user. These customers interface with the system at the gas pump,
by specifying the amount and type of gas they will buy, payin g either at the
pump or to the cashier, and then pumping the gas themselves.

The system also has to interact with other automated systems to perform its
tasks. For example, in order to accept credit card payments, the GSCS must
interface with a system ma intained by the credit card company. The credit card
system is responsible for checking that the customer's account is in good
standing and can accommodate the amount of the purchase, and for debiting the
customer's account and eventually reimbursing the gas station. The operation of
these external systems is beyond the scope of the GSCS, although the GSCS needs
to know how the external systems will communicate the success or failure of
their tasks.

The team has finished the design of the system and has begun coding.

1. Danielle, the development team leader for the GSCS, has decided to
emphasize the use of corporate software guidelines. Which of the
following statements best describe the benefits the team might expect from
documenting the code and making i t readable?

a. The documentation improves the efficiency of the code.
b. The documentation provides traceability to design components.
c. The documentation improves the organization of the code.
d. a, b, and c
e. a and b only
f. b and c only

2. Which of the following statemen ts does NOT describe a reasonable rationale

for passing a variable by reference to a function?
a. The changes to the variable values are needed after the function

terminates and the variable size is small.
b. The changes to the variable values are not needed aft er the function

terminates and the variable size is small.
c. The changes to the variable values are needed after the function

terminates and the variable size is large.
d. The changes to the variable values are not needed after the function

terminates and the variable size is large.

3. A function with an input domain of the set of all real numbers is tested

with sets of positive integers, negative integers and 0. In all of the
tests, the function performs properly. It is safe to assume that the
function has bee n tested thoroughly and will perform properly.
(TRUE/FALSE)

In the following program fragments from the GSCS, identify violations (if
any) of good programming style. Use the following choices in your response:
(a) Generality
(b) Efficiency
(c) Formattin g
(d) Documentation
(e) No violations

4. void PrintPartFile(){

/* Open the parts.dat file. Print each line to standard output. */
/* Close the file. * /
ifstream PartFile (“parts.dat”);
char line[100];

while (PartFile.getline(line,100))
cout << line << “ \n” ;

PartFile.close();
}

5. int ValidateParts (PartList &parts, PartList &master){

/* Validate and count the parts in the part list (parts). * /
/* If a part in the list (parts) does not exist in the master list, * /
/* return -1. * /
/* If all parts in the list (parts) exist in the master list, * /
/* return the sum of the quantities of each part in the list (parts). */

int total = 0;

for (int i=0; i < parts.getcount(); i++)
if (!master.Exists(parts[i])) return -1;
for (int j=0; j < parts.getcount(); j++)
total += parts[i].getquantity();
return total;
}

6. const int MAXSALES=100000; /* maximum number of sales stored * /

const int MAXNAME=100; /* maximum name size * /

struct CashierRecord{
char name[MAXNAME]; /* cashier's name */
float sales[MAXSALES]; /* sales made by the cashier */
int count; /* number of sales stored in the sales array * /
} Cashier;

Cashier cashier1;

/* SumSales sums the sales transactions for the cashier. */
/* The return value is the sum of all transactions. */

float SumSales(Cashier c){
float total; /* variable that wil l store return value * /
int i; /* loop counter */

total = 0;
/* sum the sales transactions * /
for (i=0; i < c.count; i++)
total += c.sales[i];
return total;
}
.
.
.
int main(){
Cashier cashier1;
.
.
.
SumSales(cashier1);
.
.
.
}

7. void Print(istream &is, ostream &os){
/* Print each line of the input stream (is) to the output stream (os). * /
char line[MAXLINE];

while (is.getline(line,MAXLINE))
os << line << “ \n” ;
}

8. /* Print each value of the values array on a separate line. * /

/* Print the total on a separate line after the values. */
for (int i=0; i<count; i++)
total += values[i];
cout << values[i] << “ \n” ;
cout << “Total = “ << total << “ \n” ;

During code reviews of the GSCS, the following faults were identified.
Classify the type of fault in each code fragment.

9. int n;

float x[1000];

x[i] = (1 - 2/(n-1)) * x[i - 1] + 2/(n-1) * x[i];
In this fragment, since n is an integer, the divis ion of 2/(n - 1) returns an
integer value.

a. boundary fault
b. initialization fault
c. computation/precision fault
d. b and c only
e. a and b only
f. none of the above

10. List::~List(){
/* delete all of the elements in the list * /
for (int i=1; i < count; i++)
delete list[i];
}

In this fragment, the first item of the list (list[0]) is not deleted.
a. initialization fault
b. documentation fault
c. precision fault
d. b and c only
e. a and b only
f. none of the above

11. int list[10];

for (int i=0; i<=10; i++) list[i] = i;
In this fragment, the loop i ncludes an operation on list[10] which is not
part of the array.

a. initialization fault
b. precision fault
c. capacity or overload fault
d. a, b, and c
e. none of the above

12. float list[100];

float xrange=list[99]-list[0];

for (int i=0; i<100; i++)
list[i] = (list[i]-list[0])/xrange;

In this fragment, list[0] is changed after the first iteration. All items of
the array will be 0 after the array is executed. Also, there is no check on
xrange. It may evaluate to 0 causing a division by zero.

a. computation/precision fault
b. initialization fault
c. capacity or overload fault
d. a, b, and c
e. none of the above

13. Given the following assertions:
A1: (T is an array) & (T is of size N) & (S is an array) & (S is of size N)

Aend: (T' is an arra y) & (T' is of size N) & (∀i, 0 ≤ i ≤ N, T'(i) = S(i))

Choose the statement that best describes what is happening between the two
assertions.

a. The values of array S are being assigned to the array T'.
b. The values of array T are being assigned to the array S.
c. The values of array S are being add ed to the values of array T'.
d. The values of array T are being added to the values of array S.
e. None of the above.

14. Suppose the main objective of the GSCS development is to get a working

system to show the customer as soon as possible. The best testin g
approach to choose would be:

a. Bottom - up testing
b. Top- down testing
c. Big - bang testing

d. a or b
e. a or c

Implementation of the GSCS is complete and the development has entered the
testing phase.

The figure below shows the component hierarchy of the GSCS system. Use this
figure to identify the testing strategy indicated by the sequences given.
The “;” is used between test sets and each test set is represented as a
comma- separated list. For example, the sequence {F,G};{B,F,G} means that
components F and G were t ested first. Then, components B, F and G were
tested.

15. {J};{K};{I};{H};{G};{F};{B};{C};{D};{E};{A};{A,B,C,D,E,F,G,H,I,J,K}
a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

16. {A};{A,B,C,D,E};{A,B,C,D,E,F,G,H,I ,J,K}

a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

17. {F};{G};{H};{I};{J};{K};{B,F,G};{C,H};{D,I};{E,J,K};{A,B,C,D,E,F,G,H,I,J,K

}
a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

18. {A};{B};{C};{D};{E};{A,B,C,D,E};{F};{G};{H};{I};{J};{K};{A,B,C,D,E,F,G,H,I

,J,K}
a. Top- down testing
b. Bottom - up testing

B

A

E D C

F G I H K J

c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

19. {A};{F};{G};{H};{I};{J};{K};{B,F,G};{C,H};{D,I};{E,J,K};{A,B,C ,D,E,F,G,H,I

,J,K}
a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

20. In a function of a component in the cashier subsystem of the GSCS, a

variable does not get initialized properly. Which type of testing would
be most likely expose this defect?

a. unit testing
b. integration testing
c. acceptance testing
d. installation testing
e. performance testing

21. A function X in component A requires a pointer to an integer to be passed

as an argument, but a call to the function X in compo nent B passes the
value of an integer instead. Which type of testing would most likely
expose this defect?

a. unit testing of component A
b. integration testing of components A and B
c. performance testing
d. installation testing
e. acceptance testing

22. The gas pump subs ystem is supposed to allow the user to choose whether or

not a receipt is printed, but the print function has not been implemented.
Which type of testing would most likely expose this defect?

a. unit testing
b. integration testing
c. performance testing
d. acceptance testing
e. function testing

23. A configuration file used by the reporting subsystem is not placed in the

correct directory in the customer's environment. Which type of testing
would most likely expose this defect?

a. integration testing
b. installation testing
c. perf ormance testing
d. acceptance testing
e. function testing

24. A change is made to correct a fault. The fault has been fixed, but it has

caused a fault in previously functioning code. Which type of testing
would most likely expose this defect?

a. unit testing
b. accepta nce testing
c. regression testing
d. performance testing
e. installation testing

25. The customer is unhappy with the number of screens that must be traversed

before getting to the parts list screen, a screen accessed frequently when
using the system. Which type of t esting would most likely expose this
defect?

a. integration testing
b. installation testing
c. performance testing
d. acceptance testing
e. function testing

26. The GSCS system includes reused components from a third party vendor. The

source code for the reused components is not available. Which type of
testing is feasible?

a. all - paths
b. def - use
c. branch testing
d. black - box testing

Tom, the manager in charge of testing for the GSCS, is concerned about the
reliability of the system. He decides to seed faults in the code to estimat e
the remaining faults. He has two teams testing the code. One team is led by
David. The other test team is led by Daniel. Suppose 50 faults have been
seeded in the code.

During testing by David's team, 70 faults are detected. Forty of the detected
fa ults are seeded faults.

27. What is the Mills estimate for the percentage of remaining, non - seeded

(indigenous) faults in the code?
a. 10%
b. 20%
c. 50%
d. 80%
e. It is impossible to determine from the information given.

28. What is the Mills estimate of the total number of in digenous faults

remaining?
a. 7.5
b. 10
c. 17.5
d. 30
e. 37.5
f. It is impossible to determine from the information given.

Suppose the same code is given to Daniel's test team. His team finds a total
of 50 faults. 35 of the faults found by Daniel's team were also found b y
David's team.

29. Using the numbers for Daniel's team, what is the Mills estimate for the

total number of indigenous faults remaining?
a. 17.5
b. 30
c. 50
d. 71.5
e. It is impossible to determine from the information given.

30. What is the effectiveness of David's group?
a. 30%
b. 50%
c. 70%
d. 85%
e. It is impossible to determine from the information given.

31. What is the effectiveness of Daniel's group?

a. 30%
b. 50%
c. 70%
d. 85%
e. It is impossible to determine from the information given.

32. Using the data from both test groups, what is the estimate for t he total

number of faults?
a. 100
b. 87.5
c. 70
d. 50
e. It is impossible to determine from the information given.

33. Suppose 39 faults have been seeded into a component. Testing of the

component has uncovered 32 of the seeded faults without uncovering any
additional non - seeded faults. What is the level of confidence that the
component is fault - free?

a. 78%
b. 80%
c. 82%
d. 86%
e. None of the above.

34. Using the data from the previous question, how many of the seeded faults

would have to be found without uncovering additional indigenous f aults to
have a 90% confidence level?

a. 32
b. 35
c. 36
d. 37
e. None of the above.

35. Consider the following excerpts from problem reports filed for the GSCS.

In which type of report, discrepancy or fault, does each item belong?
Answer fault report or discrepancy report .

a. “A segmentation violation occurred while viewing the part list. The
part list array may not be big enough to hold all parts. Check the
PartList class header.”

b. “In the requirements document, Section 2.1.5, a Print option should
be included in all File me nus. The File menu for the Part
Configuration Screen does not include a Print option.”

c. “After submitting the Add Part form, it took 3 minutes before the
results came back. Submitting the form should not take more than 1
minute.”

d. “When the cashier list is displayed, the newly added cashiers do not
appear on the list. Check the Add method in the CashierList class.
There was a similar problem with the part list. Theresa worked on

the part list problem. See report number 201 for more details on
the proble m and her solution.”

Review Exam 3 Answers
1. f; Readable code does not always improve efficiency. Sometimes, there is a

tradeoff between readability and efficiency. [Section 7.1, 7.2]
2. b; Passing a variable by reference means that the value of the variabl e

will be changed. If the altered value is not needed after the function
terminates and the variable size is small, the variable should be passed
by value.

3. FALSE; It is not safe to assume that the function will work properly
because it was tested only wit h integers. The function may produce the
wrong output for non - integers, or fail due to round - off errors.

4. a; only one file can be read and printed with this function. It could be
written more generally.

5. b; The two loops can be combined to make this code mo re efficient.
6. b; Since the sales array of the Cashier structure is very large, the

argument to SumSales should be passed by reference to improve efficiency.
7. e
8. c; Formatting of this code makes it misleading. It hides a fault in the

code.
9. c; Because n is an integer, the expression 2/(n - 1) will evaluate to an

integer giving an incorrect answer. [Section 8.1]
10. e; The code doesn't do what the comment describes. The variable i is

initialized incorrectly. [Section 8.1]
11. c; list[10] is out of the defined array boun dary [Section 8.1]
12. a; The first element of the array (list[0]) is overwritten during the

first iteration of the loop. The overwritten value is used in future
iterations. When the loop terminates each element of the array will be 0.
The computation does not check for xrange = 0 which may lead to a division
by zero error. Both of these faults are computation faults. [Section 8.1]

13. a; [Section 8.3]
14. b; With the bottom - up and big - bang approaches, the whole system has to be

built before a working program can be shown to the customer. With top - down
testing, stubs and drivers can be used to test the system before the
entire system is built. [Section 8.4]

15. d; big - bang testing [Section 8.4]
16. a; top - down testing [Section 8.4]
17. b; bottom - up testing [Section 8.4]
18. e; Mod ified top - down testing [Section 8.4]
19. c; sandwich testing [Section 8.4]
20. a; unit testing; This defect can be isolated to a single function in a

single component. Unit testing should uncover this type of defect.
[Section 8.2]

21. b; Since this defect involves th e interface between the two components,
integration testing of components A and B should detect the defect. Unit
testing of component A would not uncover the defect since the defect
exists in component B. [Section 8.2]

22. e; Function testing is used to deter mine if the functions described in the
requirements specification are actually implemented in the system.
[Section 8.2]

23. b; The purpose of installation testing is to make sure that the system
will function properly where it is installed. [Section 8.2]

24. c; Th e purpose of regression testing is to ensure that changes to the
system have not negated the effects of previous tests. [Section 9.1]

25. d; Acceptance testing is where the system is checked against the
customer's requirements. [Section 8.2]

26. d; Because the co de is not available, the structure of the code is not
available for testing. In this case, black - box testing is the only
feasible option. [Section 8.2]

27. b; The percentage of indigenous faults remaining is equal to the
percentage of seeded faults remaining . (1 - 40/50) = .2 [Section 8.8]

28. a;

faultsindigenous

foundfaultsindigenous

faultsseeded

foundfaultsseeded

_

__

_

__ =

foundfaultsseeded

foundfaultsindigenousfaultsseeded
faultsindigenous

__

_

×=

5.37
40

3050
_ =×=faultsindigenous

indigenous_faults_remaining = 37.5 - 30 = 7.5
[Section 8.8]

29. e; The number of seeded faults for the second test group is not given.

[Section 8.8]
30. c; effectiveness = overlapping faults/faults found by the second group

effectiveness = 35/50 = 70% [Section 8.8]
31. b; effectiveness = 35/70 = 50% [Section 8.8]
32. a; total faults = 35/(.7 * .5) = 100 [Section 8.8]
33. b;

8.0

32

40

31

39

=















=C

[Section 8.8]

34. c;

9.0
40

31

39

=















=

s

C

40
9.0

s=

36=s
[Section 8.8]

35.

a. fault report; The description of the problem includes information
from the developer's point of view. [Section 9.8]

b. discrepancy report; This description describes a difference between
the requirements and the implementation. [Section 9.8]

c. discrepancy report; This description describes a problem from the

user's point of view. [Section 9.8]
d. fault report; The description of the problem includes information

from the d eveloper's point of view. [Section 9.8]

Chapter 11: Maintaining the System

Learning Objectives:
After studying this chapter, you should be able to:

• Define what is meant by system evolution, and understand how it affects
the software development process.

• Define what is meant by a legacy system, and understand how its
characteristics affect maintainence.

• Define impact analysis, and understand when, how, and why it is done.
• Describe software rejuvenation, and why it is necessary.

Summary:
Delivery of a s ystem to the customer does not mark the end of the software
developers' involvement with the system. Rather, many systems require continuous
change, extending even past delivery. In general, the more closely a system is
tied to the real world, the more lik ely it will be to require changes (and the
more difficult those changes will be to make). Software maintenance deals with
managing change in this part of the life - cycle.

Performing maintenance requires its own set of skills, in addition to those
required for software development. Maintainers interact continually with
colleagues, customers, and users in order to effectively define problems and
find their causes. Maintainers need to be good detectives, testing software
thoroughly and hunting down the sources of failure. Maintainers also need to
understand the “big picture” of how software systems, with many complex
interactions among their components, interoperate with the environment. Impact
analysis, which builds and tracks links among the requirements, des ign, code and
test cases, is necessary to evaluate the effects of a change in one component on
the rest of the system.

Another important technique is software rejuvenation, which involves the
redocumenting, restructuring, reverse engineering and reenginee ring of an
existing system. The overall goal is to make hidden information explicit, so
that it can be used to improve the design and structure of the code. Although
complete rejuvenation is unlikely in the near future, it is being used
successfully in d omains that are mature and well - understood, like information
technology.

Measuring maintainability is difficult. A true measure of maintainability
requires evaluating the external behavior of a system and tracking the mean time
between failures. However , waiting until the system fails is too late to be of
much use to developers and maintainers. Instead, internal attributes of the
code, such as size and structure, are used to predict those parts of a software
system that are likely to fail, based on past history. Static code analyzers
are tools that aim to assist in this identification process.

Exercises:

1. The “Millenium Bug” or “Y2K problem” is perhaps the most infamous software
maintenance problem. Many computer systems represent the year as only two
di gits and are expected to have problems in the year 2000, when the value
for the new year (“00”) is suddenly less rather than greater than the
value for the previous year (“99”). Find a discussion of the Y2K problem
written for nonscientists, for example, in a newspaper or popular
magazine. How many of the maintenance problems listed in section 11.3 are

accurately presented in the article? Are there issues in section 11.3 that
contribute to the Y2K problem but are not given in the article?

2. The Software Engi neering Laboratory (SEL) at NASA's Goddard Space Flight
Center collects data from all phases of its software development projects.
When users fill out failure reports, they are asked to indicate the
severity of the defect according to the following scale: major defect with
no workaround; major defect, but workaround exists; cosmetic defect. How
can this information be used to help the SEL understand its maintenance
process better?

3. Maintenance is an area of great interest to software engineering
researchers . Conferences and workshops such as ICSM (the International
Conference on Software Maintenance) and WESS (the Workshop on Empirical
Studies of Software maintenance) are devoted exclusively to maintenance
issues, as is the Journal of Software Maintenance. R eview a recent
conference proceedings or journal issue and summarize the types of
problems maintenance research addresses.

4. Researchers with the Institute for Information Technology of the National
Research Council, Canada, study maintenance by observing th e work
practices of software engineers who are engaged in maintenance projects. A
paper by Janice Singer and Timothy Lethbridge summarizes the methods they
use to collect this type of data. (J. Singer, T. Lethbridge (1996).
“Methods for Studying Maintenanc e Activities.” In Proceedings of the
International Workshop on Empirical Studies of Software Maintenance,
Monterey, CA. Also available at http://wwwsel.iit.nrc.ca/projects/easse/).
Summarize this paper from the viewpoint of a software maintainer. How
disru ptive are the data collection methods likely to be to the
maintainer's work practices? What does the maintainer stand to gain by
participating in such a study?

5. Revisit the program you wrote for exercise 1, Chapter 7. Change the
underlying data structure o f the stack to a linked list rather than an
array, and the data type of the stack elements to a string rather than an
integer. How hard was this to do? On what types of activities did you
spend your time? Critique your earlier program in terms of maintenan ce
effort, paying attention to ideas such as comments, modularity,
encapsulation, and others that affected the ease or difficulty of this
task.

Answer Guidelines:

1. Many of the issues in section 11.3 relate in some way to the Y2K problem.
Some examples: The limits of human understanding are certainly applicable.
There is a definite limit to how quickly maintainers can approach a system
that is unfamiliar to them and understand enough about it to make the
correct changes for a maintenance problem. That diffic ulty is compounded
when the system being maintained is old and the chances of missing
documentation or even source code have increased. Management priorities
have been a major contribution to the problem. Since Y2K maintenance does
not result in a new pr oduct but rather keeps an old product running,
management in many cases did not assign a high priority to maintenance in
general and Y2K maintenance in particular. As a result, Y2K was often not
a high priority until very close to the year 2000, when the p roblem was no
longer avoidable. Morale has been a problem in some cases, in which
software practitioners were assigned part - time to handle the Y2K problem
in addition to their other duties. This type of situation tends to
reinforce the belief that Y2K mai ntenance is not an important or
interesting task.

2. The severity scale helps the SEL understand better how its development
process affects maintenance. It gives more information than simply

collecting the number of changes that have to be made during mainten ance;
it allows some insight into whether most of the changes that have to be
made are mostly small changes or large redesigns.

3. Common categories of software maintenance research include: program
understanding, predicting effort, predicting components like ly to require
rework tool support.

4. By understanding the techniques that maintainers find useful in practice,
this research hopes to provide a better idea of how software maintainers
can benefit from tool support. That is, the point of this research is that
tools should be created after the tool developers understand for which
tasks maintainers really need support. The methods listed in this paper
are at varying levels of intrusiveness; the authors understand that less
intrusive means for collecting data wil l be more welcome by maintainers.
By participating in such a study, however, maintainers can expect that
tools will be created that better address the requirements of the job they
are undertaking.

5. Answers will vary depending on the quality of the original program. The
exercise will be more useful if you have forgotten the details of the
program since it was written, since then you will have to rely on reading
the code, comments, and documentation. This situation is similar to that
software maintainers face when working on code they themselves did not
originally develop, or developed some time ago. It is hoped that you will
find that this exercise to be easy if you have made the code well
documented, straightforward and easy to understand, and modular. Howe ver,
some of these factors may be more important than others for your program,
and other factors may also be a consideration.

Chapter 12: Evaluating Products, Processes a nd Resources

Learning Objectives:
After studying this chapter, you should be able t o:

• Discuss how feature analysis, case studies, surveys and controlled
experiments differ, and the circumstances under which each is appropriate.

• Define measurement and validation, and understand how they are carried out
in software development.

• Describe t he Capability Maturity Model, ISO 9000 and other process models,
and the differences and similarities between them.

• Describe what is meant by people maturity, and the role this may play in a
software organization.

• Describe how and why development artifacts are evaluated.
• Define return on investment and its importance with respect to the

software development process.

Summary:
Previous chapters have given an overview of the large variety of methods and
tools that are available for use by software developers, throughout the software
life - cycle. This chapter takes up the question of how developers can decide
which method or tool is best to use. Answering this larger question requires
accurate answers to a number of more specific questions:

• How can developers ev aluate the effectiveness and efficiency of what they
are already doing, so that they can tell if a change to the development
process actually results in improvement?

• For a given situation, how can developers know which is the most
appropriate method or too l to introduce into their development process?

• Once a change has been made, how can developers demonstrate that the
products, processes and resources have the desired characteristics (such
as quality)?

Evaluation of software development requires first cho osing whether the most
appropriate type of study is a feature analysis, survey, case study, or formal
experiment. Models and frameworks are necessary to help developers understand
the relationships being investigated; of course, the models and frameworks
t hemselves must be evaluated in terms of how closely they match what is already
known. Regardless of the type of study, measurement is essential for any
evaluation. It is important to keep in mind that measures must be validated,
that is, it must be shown t hat measures actually capture the concept of
interest, and that the resulting predictions are accurate. A second important
concept that is important to keep in mind is the difference between assessment
and prediction. These common principles should be app lied to the evaluation of
software products, processes and resources.

Product evaluation is usually based on a model of the attribute of interest.
This chapter introduced three quality models and discussed how each one
addresses particular concerns about how specific attributes combine to form a
picture of quality as a whole. Other considerations, such as software reuse,
imply their own sets of product attributes that must be evaluated.

Process evaluation can be done in many ways. Post - mortem analysis looks back at
completed processes to assess the root causes of things that went wrong.
Process models, such as the Capability Maturity Model, SPICE and ISO 9000, are

useful for assessing the amount of insight into, and control over, the processes
being us ed.

The CMM has inspired a host of other maturity models, including a people
maturity model to assess the degree to which individuals and teams are given the
resources and freedom they need to do their best. Software projects require
other types of invest ment as well, including money and time. Return - on-
investment strategies can indicate whether business is benefiting from
investment in people, tools and technology.

Exercises:

1. In the key references section of this chapter, it is noted that the
journal Emp irical Software Engineering publishes not only descriptions of
empirical studies, but data from these studies as well. What do you think
are some of the benefits to other researchers of having access to the
data? Are there any benefits to practitioners?

2. Gi ve an example, from a previous programming project, of when you engaged
in black - box reuse. What are some of the benefits that can be expected
from black - box reuse? What are some drawbacks? Give an example of a
system for which black - box reuse would not h ave been appropriate.

3. Take a look at the latest issue of a journal that presents articles about
software engineering. (IEEE Transactions on Software Engineering, the
Journal of Systems and Software, and IEEE Computer are good examples.) Of
the articles tha t present a new technique or tool for software
development, how many actually present some kind of evidence that the
proposed technique is an improvement over what is currently used? For
those that do, classify the type of empirical study used, and identif y the
variables.

4. Select one of the studies that you identified in the answer to question 3.
Analyze this study with respect to the common pitfalls in evaluation that
are described in Table 12.2. For each pitfall, assess whether or not the
study has success fully avoided the problem, and explain your reasoning. If
the article contains sufficient information to allow you to judge whether
the pitfall was avoided, that should also be noted. If there are pitfalls
in this study, do the authors identify them and di scuss their impact on
the results?

5. A paper by Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger
addresses in some detail common pitfalls of case studies in industrial
environments (B. Kitchenham, L. Pickard, S. L. Pfleeger (1995). “Case
studi es in method and tool evaluation.” IEEE Software, 12(4): 52 - 62). Use
this paper to critique a case study of some software engineering
technology. (The journals suggested in question 3 are good sources of case
studies.) If there are problems with the study, do you think they can be
corrected in such a way thatthe study will still be feasible to run?

Answer Guidelines:

1. Perhaps the most important benefit of published data is that they help
researchers check each others' conclusions; they allow researchers to
analyze the same data and see if their results match. Publishing data also
assists in comparing data among studies since it allows researchers to
understand any desired attributes of data sets (e.g. mean, median, amount
of variation among the values). In t he same way, publishing data also
helps practitioners better understand the results of applying a
technology, and may allow them to compare results in their own environment
to data from outside.

2. Although you may report experiences with black - box code libr aries or other
forms of reuse, almost every programming language has the option to

include functions from standard libraries, which may also be an example of
black - box reuse if the source code is not available. Benefits include
being able to save effort b y reusing functionality rather than
implementing it from scratch; testing effort is also saved since
presumably the reused component does not have to undergo unit testing.
Drawbacks include the time required to find the component and figure out
how to conf igure it for use in a particular system. A drawback unique to
black - box testing is the fact that, since the internals of the component
cannot be tested, it is more likely that defects in the code will be
propagated unnoticed to other systems. Systems in w hich reliability or
safety is an overriding concern may not be good candidates for black - box
reuse for this reason.

3. Answers will vary. The point of the question is to determine whether you
can differentiate articles describing empirical studies of the kin d
mentioned in this chapter (section 12.1) from articles in which the claims
are not substantiated, or are substantiated only with analytical
reasoning. It is important to be clear as to which category each article
you review falls into, and to back up you r categorization with points from
the article.

4. Answers will vary. The point of the question is to assess whether you
understand the meaning of the nine pitfalls listed in Table 12 - 2, and the
form they take in evaluation studies. Make sure you understand th e
definition of each pitfall, and can answer whether or not it appears in
the study.

5. Answers will vary, depending on the case study selected. There are many
guidelines in the Kitchenham et al. paper that can be used to critique
case studies; your paper sho uld address questions such as whether a case
study was an appropriate form for this study in the first place, and
whether there are any problems of construct, internal, or external
validity. In many cases, correcting defects in empirical studies may
requir e an infeasibly large amount of time or effort from the developers
who serve as subjects; you should consider whether this is true for the
study you have chosen.

Chapter 13: Improving Predictions, Products, Processes a nd
Resources

Learning Objectives:
After studying this chapter, you should be able to:

• Discuss strategies for improving predictions. Explain how reuse and
inspections can be used to improve software products.

• Describe how Cleanroom and maturity models can be used to improve software
processe s.

• Describe how investigating trade - offs is necessary to improve software
resources.

Summary:
Chapter 12 provided an introduction to the methods used for evaluating software
products, processes, and resources to determine their impact on development and
maintenance. This chapter provides concrete examples of software evaluation and
improvement by discussing actual instances of technology adoption in four areas:
prediction, products, processes and resources.

Predictions can be improved by using u - plots, pr equential likelihood and
recalibration to reduce noise and bias. Products can be improved as part of a
reuse program, or by instituting an inspection process. Processes can be
improved by evaluating their effects and determining relationships that lead to
increased quality or productivity. For example, models can be developed, based
on past history, to predict when components will be faulty; this technique
reduces the effort required to maintain a system, and ultimately leads to
higher - quality software. Similarly, process maturity frameworks may assist
organizations in implementing activities that are likely to improve software
quality, although careful controlled studies have not yet provided sufficient
evidence as to their effectiveness. Finally, there is promise of improvement in
resource allocation as we learn more about human variability and examine the
trade - offs between effort and schedule.

One of the common threads in the technologies discussed in this chapter is the
importance of human factors r esearch. Many of the studies reported in this
chapter emphasize the need for teams to check each other's work. Inspections,
Cleanroom, reuse and other quality - related processes involve the careful
scrutiny of one person or organization's work by another. All of these
approaches are largely dependent on people factors in order to be effective. In
general, researchers admit that human variability is a key factor in determining
whether quality and schedule goals will be met. Thus, an especially promising
are a of research in software engineering is into issues such as team size,
collaboration styles, and good working environments, which determine how
software engineers themselves can best be supported. A promising way to improve
this type of research in softwa re engineering is to learn from similar studies
that have already been undertaken in the social sciences.

Research on improvement issues is growing, as developers increasingly ask for
empirical proof that proposed technologies really work. This chapter
i llustrates the need for more surveys, case studies and experiments; the Basili
and Green example shows how a collection of studies can be organized to build on
each other. Of course, to be carried out effectively, such studies require that
developers are w illing to participate in case studies and experiments and to
give feedback to those who are trying to determine what leads to improvement.

Exercises:

1. An organization currently uses informal, English - language requirements and
requirements reviews in its so ftware development process. A consultant has
recommended that it switch to the more formal requirements language, Z.
The organization decides to try out Z on a new project, to see whether or
not it improves the software process. To evaluate Z with respect to the
current process, what types of measurements should be collectedon projects
using English requirements? On the trial project? Justify your answers.

2. Describe an empirical study that could be used to assess whether Z
represents an improvement for the organization. What type of empirical
study would you select, and why? How much confidence could the
organization have in the result? How much disruption would be necessary to
the organization's usual software development process?

3. In a 1997 paper, Vic Basil i describes a series of studies of a particular
kind of software technology, called software reading. (V. Basili (1997).
“Evolving and packaging reading techniques.” Journal of Systems and
Software, 38: 3 - 12.) Each study in the series contributed some k nowledge
about the use of this technology in a particular environment. A number of
different types of studies were used: Some studies looked at whether or
not the technology was feasible in the environment, other studies tested
very specific hypotheses abo ut the technology, and still other studies
examined the use of the technology in detail. What kind of studies would
you recommend for each of those goals? Sketch a series of studies for the
organization interested in Z (discussed in questions 1 and 2) that
incorporates all three goals.

4. Many studies in computer science compare different technologies and do not
involve human factors. For example, a study of a new algorithm may seek to
determine whether it runs faster than an older version on practical data
se ts. However, many empirical studies in software engineering involve
human subjects, because they need to assess the usefulness of development
techniques for the people who will use them. Find a recent journal
article that describes an empirical software s tudy using human subjects.
Briefly summarize (2 paragraphs) the study and itsresults. What are the
things that make studies using human subjects different from studies that
do not? Use specific examples from the journal article to illustrate your
points.

5. Do a search of the literature in which you identify the relevant papers on
two different approaches to process improvement. Use the references given
in the textbook as a starting point. Compare and contrast the two
approaches in a short report (less than 5 pages). Your report should be a
summary of the two approaches, written for an organization thinking of
investing in process improvement. You should answer questions such as:
Where have the approaches already been applied? Have they been shown to
work? What support is required from the organization? Identify other
relevant criteria as you see fit.

Answer Guidelines:

1. The organization will need to collect measures of how effective its
requirement process is; measures such as the time and effort required from
developers would be good choices, as would some measure of the quality of
the resulting requirements. (You should remember that “quality” is a
difficult concept to measure directly, and propose a way it can be
feasibly assessed. Measures of quality may var y depending on the interests
of the organization, so you should be sure to justify your answer.) Other
variables are required to describe the context in which the process is
applied; for example, the type of project or experience of the developers

using it . Collecting the same type of measures for both the Z and natural
language requirements processes will enable comparisons between the two.

2. You may choose feature analysis, case studies or controlled experiments
(surveys are excluded since there are no retr ospective data). Because
multiple answers are possible, you should be sure to justify your choice:
What do you think are likely goals for the organization conducting the
study? Which type of study stands the best chance of achieving those
goals? You will a lso need to correctly answer the follow - up questions
based on your choice of study type. Confidence and disruption are
generally directly related; feature analyses would produce low confidence
but minimal disruption, while controlled experiments would yiel d high
confidence but place the most extra demands on developers' schedules.

3. A feature analysis or controlled experiment could provide a quick answer
as to the feasibility of a technology. A controlled experiment is best for
testing a particular hypothesis , since variables besides the one of
interest can be controlled. A case study is probably the best choice for
getting a more in - depth knowledge, since a project can be followed all the
way to completion (and if a sister project can be found, compared to a
similar project not using the technology to understand its effects).
Answers as to the series of studies will vary, but here is one
possibility: A feature analysis is undertaken to determine if Z looks
promising. It seems to match the needs of the users, s o volunteers are
solicited who would be willing to try out the technology and report on the
results. These volunteers are assigned to a new project, which is
monitored as a case study. A comparison with a similar, previous study on
which Z was not used see ms to indicate that the use of the technology
represents an improvement in the way requirements are specified. Finally,
a larger controlled experiment is conducted to see if the improvement is
noticed for a wide range of the developers in the organization.

4. Answers will vary depending on the studies selected. One acceptable answer
could be sketched in the following way: Studies with human subjects have
to contend with a wide variation among subjects, even those with similar
backgrounds and experience levels. It is rare to find subjects who perform
equally well on all tasks, even if they have had similar experience or
training; humans have natural aptitudes and interests. Studies with human
subjects also have to contend with variation within subjects; that is,
humans do not perform the same task at a consistent level. They have bad
days, or learn things as they go along; they can be distracted, or focus
more intently on the task. Studies of computer technologies can be
expected to produce much more determinist ic results.

5. Answers will vary. In identifying the relevant literature on a particular
approach to software improvement, you should focus first on finding the
published work in which the approach is originally defined. If there have
been major changes to t he approach since it was first published, you
should try to track down literature in which the changes are proposed and
discussed as well. Also, you should look for publications that describe
how the approach has been applied in practice - the most recent
publications and most thorough descriptions are always among the most
relevant. Use this list of publications to support the points you make as
you compare and contrast the two approaches. Begin by summarizing the
definitions of the approaches. Then, summa rize the publications describing
their application. Were you able to find many publications describing the
use of the approach in practice? If not, has your search been less than
thorough, or is the approach simply not used often? In what types of
organiza tions have the approaches been applied? What kind of results have
been obtained? Can you say anything about the factors that are present in

each case that may have contributed to the good or bad results that were
seen?

Chapter 14: The Future of Software Engineering

Learning Objectives:
After studying this chapter, you should be able to:

• Describe where the field of software engineering stands with respect to
Wasserman’s eight steps.

• Describe what is meant by “technology transfer,” and why it is important .
• Understand what kinds of evidence can bear on technology adoption, and

how researchers provide such evidence.
• Understand how decision making can (and should) occur in software project

management.
• Describe some important areas for future work in software research and

practice.

Summary:
Software engineering is a young field (the term itself was first used in 1968)
but has already seen great changes. The field has progressed with the
development of complex programming languages and more reusable products. F ormal
methods for problem description, tools for assisting software development, and
useful design principles have been developed and helped software engineers
tackle ever - larger problems. However, there is more accuracy in the large than
in the small; the field tends to agree on broad principles but is less
successful in pinning down the effects of specific decisions that project
managers will need to make.

In the terms of Wasserman’s eight principles, software engineering has
experienced:

• The use of abstraction, to help focus on the core of the problem, most
successfully applied in design and code. However, more work is needed in
other areas such as software requirements, work habits, and user
profiles.

• The development of a wide range of analysis and design methods and
notations to suit personal preference and comfort. However, no common
method or notation has been developed that the others can be mapped to,
to simplify communication and understanding.

• The role of user interface prototyping become more and more critical.
Work needs to continue in this area to support the production of ever
more responsive and useful products.

• The very beginning of the identification of architectural styles and
patterns with their associated pros and cons.

• A growing understa nding that software process affects product quality,
but not exactly how that quality is affected by the visibility and
controllability of the process. More work is needed into how specific
process choices affect the development of the product.

• A focus on reuse, mainly of code. Reuse must be expanded to other work
products throughout development and maintenance.

• The use of measurement to see if products meet quality criteria. Future
work needs to expand to measure key characteristics of products,
processes, and resources in ways that are unobtrusive, useful, and
timely.

• Significant investment in tools and integrated environments that have not
lived up to their promise. Current and ongoing efforts are looking at
tools with more realistic expectations, for fea sible tasks such as

tracing connections among products, background measurement, and reuse
support.

An important area where improvement is needed is technology transfer, that is,
the transformation of a promising research idea into a technology that is
use ful and effective for practitioners. Technology transfer decisions have both
a technical aspect (finding the right technology to solve a problem) and a
commercial aspect (appealing to customers who need to have the problem solved).
Widespread commercial ad option of promising technologies can take a decade or
two, so given the time - to - market pressures of the industry today it is not
surprising that software development organizations often rush to grab new
technologies before there is clear evidence of benefi t. Enabling decisions to
be made on the basis of better and clearer evidence is a primary goal in the
improvement of technology transfer practices.

Looking to the area of “diffusion research” in marketing helps us understand
how decisions about technology adoption are made. Data across many
organizations show that there are distinct types of technology adopters, who
exhibit varying degrees of willingness to try out a new technology: innovators,
early adopters, early majority, late majority, and laggards. E ach group has
different requirements for evidence of a technology’s effectiveness and the
level of support they need before they are willing to invest in using it.
Knowing and being able to address these requirements is thus an important
prerequisite to se eing new technologies effectively adopted in industry.
However, studies have shown that software researchers have their own goals and
preferences for the kinds of evidence they collect, which don’t always address
the needs of practitioners. This mismatch b etween the two communities
diminishes the relevance of research work and results in technology decisions
being made without the kinds of evidence that are really needed.

Conclusions about a technology have to be drawn from a collection of evidence,
where each piece of evidence might count more or less than others based on what
is known about it. The legal community has a long tradition of building
conclusions in this way and can provide some guidance for addressing important
issues. For example, we can pla ce a particular piece of technology into one of
five categories, based on what is known about its source and credibility:
tangible evidence, testimonial evidence, equivocal testimonial evidence,
missing evidence, or accepted facts. When various pieces of e vidence conflict,
decision makers need to decide whether some piece of evidence is flawed, or
whether the information can be used to refine the conclusion by understanding
how variations in the context from which the evidence was collected affected
the res ults. In software technology adoption people generally look for evidence
about a technology’s relative advantage, compatibility, complexity,
tailorability, and observability.

All of this information can be used to outline a general process for technology
transfer. First, there should be a preliminary evaluation of a technology
within an organization’s culture. The results contribute to a growing body of
evidence that can be evaluated itself to see if it contributes compelling
evidence for adopting the tech nology. If the decision is made to invest in the
technology, then effort must be spent to package and support it, to facilitate
its adoption throughout the organization.

Of course, software development involves decision - making on a wide range of
issues, n ot just technology adoption. Again, however, many other fields
contribute both descriptive and predictive theories that help us understand the
process. One such theory identifies four important elements that affect any

decision: problem finding, problem co ntext, problem solving, and
legitimization. Group decision - making adds even more complexity, since issues
of trust, communication, and cooperation are added to the mix. Group issues can
be addressed by selecting an appropriate decision strategy, e.g., a di alectic
process, third - party reconciliation, brainstorming, round robin. In an
organization, the right choice of strategy can also depend on whether the
decision is strategic, tactical, or routine.

Observational studies of decision - makers at work have led to a “recognition -
primed” decision model, which suggests that people keep a mental repository of
past experiences that can be compared to the current situation. In this model,
people reason about which experience is closest to the current situation, and
t hen use mental simulation to estimate whether the same solution can apply.
However, the reasoning process is not always so straightforward. Bias can creep
into decision - making in numerous ways: examples are contextual bias, stereotype
threat, status - quo bi as, and a reluctance to appear negative. People often tend
to over value evidence that is case - specific, recent, or particularly vivid.

The situation of group decision - making is similar. Techniques such as Delphi
exist to help teams converge to a solution . However, bias can enter the
process, often through issues of group dynamics.

At this time, the field of software engineering is grappling with not only
technical issues, but also with questions about the field itself. Can software
engineers be licensed and trained in the same way as other engineers? What
material belongs in a comprehensive software engineering “body of knowledge”?
One of the themes of this chapter (and of this book) has been that, to address
such questions, we need to view software engin eering in its broader setting,
recognizing that software is the product of creative people working in teams.
We must study the ways we are similar to other engineers but also embrace other
disciplines, including the social sciences, so that our processes a re
effectively tailored to the human beings applying them, and our products are as
useful as possible to our customers.

Exercises:

1. The “recognition - primed” decision model postulates that people make
decisions by keeping a repository of past decisions and their results,
against which the current situation is compared to suggest a likely
strategy. Ongoing work is attempting to apply this theory at the level of
whole organizations, by creating an organizational “experience base,”
describing the past work of a ll employees, which can be searched for
answers to new problems. Can this model be applied directly to the
organization? What are some complications that will have to be overcome
before systems of this type could be effective?

2. Find a paper from the researc h literature describing a new technology.
Remember in this context that “technology” can have a broad meaning,
including software processes, tools, or specific techniques. Describe the
particular technology being proposed. Does the paper describe who the
anticipated users of the technology will be? Can you categorize those
users according to the types of adopters in Figure 14.1? What arguments
are made as to the technology’s effectiveness? How could you classify
those arguments according to the categories o f evidence proposed by Schum
(described in section 14.2)?

3. Find a paper describing an organization’s practical experience with a
particular technology. If at all possible, find one describing experience
with the same technology you chose in question 2. (Man y conferences,
including ICSE, now include tracks dedicated to industry reports, making

these conference proceedings a good place to start your search.) How does
the paper measure the success (or lack of success) with the technology?
What kinds of evidence are presented to support the evaluation of
effectiveness? How would you classify that evidence according to the
categories of evidence proposed by Schum (described in section 14.2)?

4. As a project manager, John has been using design inspections on his
proje cts since he came to his current employer, even though his manager
does not believe that the inspection personnel have the necessary
background to be successful. Over the last five years, seven design
inspections were undertaken and John considered all of them successful
(i.e. they all found some significant issues, and no major defects caused
by design were found in the product in later development or use).
However, in this year three inspections were undertaken and all were
unsuccessful (major problems sl ipped through). One of these instances was
particularly embarrassing for John since a major defect was not found
until after delivery to the customer, and the redesign that was necessary
was particularly expensive. Now John is starting a new project (which is
not very similar to his previous projects in this organization) and has
to consider whether to spend the resources on a design inspection again.
What sources of bias should he be aware of that might affect his
decision?

5. Given the situation described in question 4, the body of evidence John is
accumulating about design inspections has internal contradictions. What
can John do to try to draw a meaningful and accurate conclusion?

Answer Guidelines

1. It is hard to apply the model directly, primarily for two reasons: first,
the information at the organizational level comes from many employees,
not just one person’s past experience. Secondly, the information has to
be made explicit, so that other people can share and understand, not just
stored for personal use . From these differences, there are a number of
difficulties that arise. Some of the most important are: Each item that
is stored has to be classified in some meaningful way so that it can be
found again, and the user can judge how close it is to the curre nt
situation. A related problem is that queries to the experience base have
to satisfy two (often contradictory) requirements: they must make sense
to the person doing the query, matching how he or she actually thinks of
the problem trying to be addressed, and also be powerful and accurate
enough to be used to find relevant information in the base. And, the
information has to be stored in such a way that it is useful to the
person doing the query when it is found. That means that somehow the
context of the decision, the decision itself, and the results have to be
described in a way that is understandable and meaningful.

2. Answers will vary depending on the paper chosen. It is important to note
that research papers often fail to address the anticipated users of a
proposed technology; the type of adopter for whom this technology is
suitable may have to be inferred from the amount of existing evidence and
support for the technology. The type of evidence cited to support the
effectiveness of software technologies v ary widely, although there is
some evidence that the number of papers citing some empirical evidence
(which would be categorized as testimonial evidence in Schum’s taxonomy)
has been increasing.

3. Answers will vary depending on the paper chosen. Ideally, mea sures of
success would come from Rogers’ list of technology attributes described
in Section 14.2. The type of evidence cited to support the effectiveness
of software technologies vary widely.

4. In this specific situation, a number of biases might come into p lay for
John. Decision makers tend to be biased toward evidence that is recent
and vivid, so John might over value the evidence from this year,
especially from the project that he found particularly embarrassing, and
make an overly negative judgment about the inspections’ value. Since
people also tend to be biased toward case - specific evidence, John might
be tempted to make a larger generalization about inspection effectiveness
even before he examines how the new project differs from the old ones in
ways th at might impact the inspections. There is nothing in the question
to lead us to believe that contextual bias would apply, although how John
frames the question to himself would certainly play a role. If he asks
himself whether he “wants to spend the resour ces” or “wants to actively
pursue a higher - quality design” in the new project (two different ways of
saying the same thing), his answer could certainly be influenced. There
would not appear to be any status quo bias in this example since it is
clear that t he new project will not be a familiar environment. Although
it probably wouldn’t come into play in the decision, stereotype threat
may be affecting the results; if the inspection personnel know that
others in the company believe they don’t have the backgro und to be
effective, this could be influencing their performance.

5. Since all of the evidence comes from personal experience, John shouldn’t
weight some of it less than others due to the source (for example, he
might not have paid as much attention to some i nspections if he had only
heard about them second - hand). John should examine the evidence to make
sure that what he knows is accurate. Were the previous inspections really
as successful as he thinks? Did the ones this year really miss issues
they should ha ve been expected to catch? If the evidence is accurate then
he should pursue contextual factors that might explain the discrepancy,
for example, were the inspections this year on different types of
systems, using different personnel, or using a different i nspection
process? These contextual factors might explain why some were successful
and others not.

Review Exam 4
The following questions are in reference to a hypothetical “Gas Station Control
System” (or GSCS) that will be used to help manage an America n- style gasoline or
service station. Our hypothetical gas station basically provides two services:

• There is a small store that carries car parts. Inside the store is at
least one cash register, operated by a cashier who is an employee of the
gas station.

• There are a number of gas pumps, at which customers can park their cars,
interact with the system to pay via credit card, and then pump their own
gas. Alternatively, the customer can pay for his or her gas via cash or
credit card by going into the store and paying directly to the cashier.

Thus the GSCS has two main classes of users. The first is the cashier, who uses
the GSCS to record purchases of car parts by customers. The GSCS must allow the
cashier to enter the type and number of parts purchased, t hen compute the total
purchase price and handle the payment. Customers purchasing gasoline are the
second type of user. These customers interface with the system at the gas pump,
by specifying the amount and type of gas they will buy, paying either at the
pump or to the cashier, and then pumping the gas themselves.

The system also has to interact with other automated systems to perform its
tasks. For example, in order to accept credit card payments, the GSCS must
interface with a system maintained by the credit card company. The credit card
system is responsible for checking that the customer's account is in good
standing and can accommodate the amount of the purchase, and for debiting the
customer's account and eventually reimbursing the gas station. T he operation of
these external systems is beyond the scope of the GSCS, although the GSCS needs
to know how the external systems will communicate the success or failure of
their tasks.

The GSCS is divided into three subsystems:

• A gas purchase subsystem, that takes care of customer interaction with the
gas pumps;

• A cashier subsystem, that interacts with the cashier to accept payment for
the purchase of car parts and gasoline;

• A tracking subsystem, that logs all purchases and tracks the inventory
remaining .

The questions in this section have to do with maintenance issues in the
implementation of the system, and with the operation of the system once it
reaches the maintenance phase of the lifecycle.

1. While implementing the system, the development team has g iven some thought
to the type of maintenance changes the system will require. The first
step in doing this might be to:

a. Classify the system as an S - type system.
b. Classify the system as a P - type system.
c. Classify the system as an E - type system.
d. Recognize tha t this system is likely to require no maintenance

activities.

2. The development team also recognizes that certain attributes of the system
itself may make it easier or harder to maintain. Which of the following

statements about the system are likely to aff ect the effort required to
make changes?

a. The GSCS must respond to customers in real time.
b. The requirements and design are well - documented.
c. The GSCS must interface with several different pieces of hardware,

such as the cash register, the gas pumps, and the credit card
systems.

d. A and B
e. A and C
f. B and C
g. A, B, and C

3. TRUE or FALSE: While implementing the system, the team tracks seven

measures of software complexity, on the assumption that the most complex
modules will be likely to require the most future mainten ance. A
reasonable way to minimize the data collection effort would be to select
the one measure from this set that seems best correlated with maintenance
effort and discard the rest.

4. On the past several projects, the team has tried to use a predictive mo del

that estimates the amount of maintenance required by a system based on the
code complexity measures, among other factors. However, the predictions
seem to consistently underestimate the actual effort required by about
40%. Which of the following is a valid assessment of the model?

a. It suffers from bias, which should be assessed with a u - plot.
b. It suffers from noise, and should be assessed using the prequential

likelihood function.
c. It suffers from both bias and noise and should be discarded.

5. TRUE or FALS E: The prediction system described in question 5 is valid only

if the acceptance range is greater than 40%.

6. TRUE or FALSE: If a measure (such as one of the complexity measures from
question 3) were not valid for predicting effort, it could not be
internally valid.

While implementing the system, the development team keeps in mind the Belady -
Lehman equation of maintenance effort. They would like to use this equation
as a guide that will hopefully al low them to save effort during the
maintenance phase. According to this equation, are the following
expectations of the development team TRUE or FALSE?
7. A system developed using good software engineering principles will be

slightly easier to maintain than one that hasn't used these principles.
8. The best use of resources would be to require someone unfamiliar with the

system to perform the maintenance, since that person is unlikely to make
the same mistakes or assumptions as the original development team.

9. All else being equal, if the development team is equally familiar with two
systems from different environments, and the systems are equally complex,
the expected maintenance effort is roughly equal.

After the system is completely implemented and has been in operation for some
time, a number of changes have been identified that should be made to the
system.

10. As changes are made to the system, which of the following would be

reasonable to expect?

a. If enough new functionality is added, it will eventually be more
cost - effective to rewrite the GSCS rather than continue modifying
it.

b. The number of modules in the code will increase and the connections
among them will become more complicated.

c. Measures of the programming process, such as productivity of the
maintenance team, will vary greatly as the system changes over time.

d. A and B
e. A and C
f. B and C
g. A, B, and C

11. One of the credit card companies upgrades its system for handling credit

card payments, and this requires a slight change to the type of data that
the GSCS needs to send to it. This situation:

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no maintenance to be performed.

12. The gas station owner has stipula ted that the GSCS should be able to

handle additional gas pumps, if the station decides to invest in them in
the future. However, the development team realizes that the way in which
it handles concurrency will not scale up if more gas pumps are added at
t he gas station. This situation:

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no maintenance to be performed.

13. An additional service is added fo r customers at the gas station.

(Customers can now rent parking spots.) This situation:
a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no mainte nance to be performed.

14. When receipts are printed, if the customer's name exceeds a certain length

then the purchase price does not fit on the receipt and is not printed.
This situation does not occur very frequently (at most, once a week). This
situation :

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no maintenance to be performed.

15. The situation described in question 14 represents a problem with the

quality of the system because it represents a reduction in
a. Reliability
b. Integrity
c. Consistency
d. a and b
e. a and c

f. b and c
g. a, b, and c

16. After the problem discussed in question 14 is identified, one of the

developers redesigns a small part of the design to fix the problem, and
changes the code accordingly. She then updates the requirements document
so that the functionality now in the system is explained correctly. This
is an example of:

a. Maintaining vertical traceability
b. Maintaining horizontal traceability
c. Both a and b
d. Neither a nor b

17. Operation of the system also reveals problems with the way it handles

concurrent users at different gas pumps. Upon investigation, it was
discovered that this problem stems from a module that was specified
correctly in the requirements and design, but was implemented incorrectly
in the code. This problem might have been discovered earlier if the team
had used an appropriate:

a. Linker
b. Debugging tool
c. Cross - reference gener ator
d. Static code analyzer

18. Suppose that we want to evaluate the quality of the GSCS using Boehm's

quality model. From which of the following perspectives would we assess
the utility of the system?

a. The owner of the gas station
b. The cashiers and customers at the gas pumps
c. The maintainers of the system
d. a and b
e. a and c
f. b and c
g. a, b, and c

19. The team members who worked on the gas purchase subsystem used a new CASE

tool, and they are claiming that it should be adopted by the entire team.
The team leader decides to investigate whether team performance would
really be improved in this way. As a basis for his evaluation, he
interviews several team members and looks for trends and patterns in their
responses. He asks members who used the tool questions such as: wheth er
the use of the tool led to more frequent or characteristic kinds of
problems, whether the tool was reliable, and what kinds of tasks the tool
was used for. He also talks to team members who did not use the tool, in
order to see if they experienced probl ems that using the tool might have
avoided. The team leader will then try to relate this information to any
differences in productivity between team members who used the tool and
those who did not. This type of investigation would best be described as
a:

a. Feature analysis
b. Case study
c. Survey
d. Formal experiment

20. The type of investigation described in question 19 is probably a good

choice for an initial answer to this question, because:

a. The effects of potentially confounding factors can be easily
eliminated during the analysis, so that any relationship between
tool use and productivity will be easy to see.

b. This type of investigation is well - suited to retrospective data, and
thus good use can be made of data already collected for othe r
purposes.

c. It ensures that the data collected about the tool will be
representative of all important types of users.

d. a and b
e. a and c
f. b and c
g. a, b, and c

21. Based on the initial investigation described in question 19, the tool

lo oks promising for use by the development team. The team leader would
like to run one more small study to confirm this indication. He decides
that the most appropriate type of study will be a formal experiment. He
constructs a small programming assignmen t that he feels should take only a
few hours, and gives the assignment to two groups of developers who have
agreed to participate. Members of one group are asked to program the
solution as they normally would, while the second group is asked to come
up wi th a solution using the tool. The first group has no access to the
tool, and cannot use it; and the team leader can examine the files
produced by the tool to make sure the second group actually did use it as
expected. Because there is a learning curve inv olved in use of the tool,
the second group consists of developers who used the tool on the last
project. The team leader can then study the quality of the solutions
produced, and the effort required, to assess how useful the tool would be.
The above stud y suffers from which of the following pitfalls?

a. Bias
b. Homogeneity
c. Misclassification
d. a and b
e. a and c
f. b and c
g. This study has none of these pitfalls.

22. TRUE or FALSE: Assume that any pitfalls identified in question 21 are

fixed. The team leader can be very confident that the results seen from
the study would apply if the team used the tool on a real project.

23. TRUE or FALSE: The study described in question 21 directly tests the

following hypothesis: “Using the tool produces better quality software
than using the normal development method in this environment.”

24. After studying the issue carefully, the team leader is convinced that the

tool would be useful to the group, and acquires it for the next project.
To assess whether his decision was a good one, the team leader monitors
the number of hours developers actually spend using the tool. However, it
turns out that, compared with the last project, developers on this project
end up using it much less. The tea m leader can reasonably conclude:

a. The developers would find the tool more useful, if only they would
use it more.

b. This project is different in some way from the last one, which makes
the tool less applicable.

c. This project is simply smaller than planned, an d requires less
development activity.

d. a and b
e. a and c
f. b and c
g. a, b, and c

Once the project is completed and some maintenance tasks are taken care of,
the team leader decides to spend some time reviewing the team's software
development process, in order to identify potential improvements that can be
made for the next project.

25. TRUE or FALSE: The team leader's normal post - project activity is to

schedule some time for a one - on- one interview with each member of the
team. He asks each member how he or she felt about the last project. He
allows them to talk about organization, process, or anything else they
find important and does his best not to ask leading questions or to give
his own opinion. This approach is an optimal way to conduct post - mortem
analyses.

26. TRUE or FALSE: The team leader decides to try something new for this

project: A “Project History Day” designed to track down the root causes of
problems experienced while developing the GSCS. He invites the entire
development team to the full - day meeting , expecting each member to raise
any important problems encountered and the entire team to participate in
discussing how to avoid it in the future. This Project History Day should
be expected to be a successful tool for process improvement.

27. TRUE or FALSE : The final step of the team leader's process improvement

effort is to produce a report to share the team's process discoveries with
managers and other developers in the organization. The team leader is
careful to include positive as well as negative findi ngs. The top three
problems of the last project are discussed in detail, along with suggested
ways of fixing them. This strategy is an optimal way of publishing
postmortem analysis results.

28. The team has also considered CMM as a way to improve their softw are

development process. Which of the following accurately describes the CMM?
a. It is meant to be used by a software development organization, which

can use the key process areas to determine which aspects of their
development process to improve.

b. It is mean t to be used by software customers, who can use it to
assess the strengths and weaknesses of the software developers with
whom they contract.

c. The highest CMM ranking corresponds to the situation in which the
software development process is understood simpl y as a “black box”
that converts the inputs to the process into quality software.

d. a and b
e. a and c
f. b and c
g. a, b, and c

29. TRUE or FALSE: The ability to change the software development process

based on lessons learned from previous projects is achieved at an e arly
level of the CMM ranking system, and allows an organization to progress to
higher levels.

30. TRUE or FALSE: One criticism of the CMM is that it assesses only the

technical quality of an organization and largely ignores business quality.

31. Which of the fo llowing statements best capture the difference between CMM

and SPICE?
a. CMM defines desirable practices which serve as a benchmark for

comparison.
b. The method for performing a SPICE evaluation is prescribed so as to

be as objective as possible.
c. SPICE addresse s processes, distinguishing between base and generic

practices.
d. a and b
e. a and c
f. a and c
g. a, b, and c

32. In contrast to the CMM, the people capability maturity model

a. Is aimed at assessing the capability of the developers comprising
the development organization .

b. Focuses more on the software developers themselves as a resource of
the software organization, and less on the technology used by the
organization.

c. Awards a high level of maturity to an organization that has a
quantitative understanding of how its practi ces are increasing the
critical skills of its staff.

d. a and b
e. a and c
f. b and c
g. a, b, and c

After the GSCS has been deployed and begun stable operation, the development
team starts on their next project, building an inventory tracking system for
a convenienc e store.

33. One of the first things the development team realizes is that the

inventory system from the GSCS can be largely reused in the new system,
with minor modifications. If they are able to reuse modified parts of the
GSCS in the new system, this type of reuse could be described as:

a. Producer, black - box reuse
b. Producer, white - box reuse
c. Consumer, black - box reuse
d. Consumer, white - box reuse

34. Because of situations like the one described in the previous question, the

development teams decides that they would l ike to look into creating a
reuse library. Which of the following are reasonable expectations about
investing in reuse?

a. It will improve the speed at which prototypes can be constructed.
b. It will produce concrete benefits in the short term.
c. It will help red uce time spent on unit testing as well as on coding.
d. a and b
e. a and c
f. b and c
g. a, b, and c

35. TRUE or FALSE: Studies have shown that, under certain conditions, code

reuse can actually lead to more fault - prone software than writing code
from scratch.

36. TRUE or FA LSE: To help decide whether or not investing in a reuse
library would be worthwhile, the team looks for “testimonial evidence.”
This means they would like to base the decision on information from
sources such as direct observation of code libraries in use and second -
hand information from other developers who have experience with them.

37. TRUE or FALSE: The credibility of the evidence described in the
previous question is related primarily to its accuracy.

38. If the team lead analyzed the team as being in the “mai nstream
market” in terms of adopting new technologies (as opposed to being in the
class of “innovators” or “early adopters”), which of the following would
be true?

a. The team would be willing to invest some of its own time into
figuring out for themselves ho w to install and use the library, if
support was not available.

b. The team would be willing to invest in a reuse library only after
there was widespread evidence of its effectiveness.

c. An important factor in the decision would be what other members of
the org anization’s business community are doing.

d. A and B
e. A and C
f. B and C
g. A, B, and C

Review Exam 4 Answers

1. b; The GSCS is a P - type system, since the problem can be described

directly and completely, and has an exact solution. Unlike an E - type
system, the syste m is not embedded in the environment, that is, the
practical abstraction of the problem is unlikely to change due to an
improved understanding resulting from the solution. As a P - type system,
incremental change is possible in order to improve the solution. [Section
11.1]

2. g; In general, a system with real - time requirements is more difficult to
change than a system without such requirements. The existence of
documentation affects maintenance effort since a system without well -
documented code and design can b e almost impossible to search through for
a problem's solution. The need to interface with different types of
hardware can also be expected to affect maintenance effort since it is
possible that the code will require changes every time any piece of
hardwar e is upgraded or replaced. [Section 11.3]

3. FALSE; Section 11.4 of the textbook describes how it is necessary to be
cautious in using only one measure to represent complexity, since each
measure captures only one attribute of the system, and there are many
attributes that contribute to complexity.

4. a; The prediction is biased because it is consistently less than the
actual value. However, because the predictions do not fluctuate as
underestimates and overestimates of the actual value, we cannot say the
predic tion is noisy. [Section 13.1]

5. TRUE; A prediction system is said to be valid if it makes accurate
predictions. The acceptance range specifies the accuracy required of the
model. [Section 12.3]

6. FALSE; The internal validity of a measure (how well it measures the
attribute it claims to) should not be rejected just because it is not a
part of a valid predictive system. The textbook uses the example of lines
of code, which is a valid measure of program size but which is not always
useful as a predictor of faults. [Section 12.3]

7. FALSE; The variable 'c' is reduced by software engineering practices and
is an exponential term in the equation. Thus even small changes to 'c'
have the potential to greatly affect the expected effort. [Section 11.3]

8. FALSE; The variable 'd ', the team's familiarity with the software,
decreases the expected effort as it decreases. [Section 11.3]

9. FALSE; The relevant variable here is 'K,' which is an empirical constant
that depends on the environment. [Section 11.3]

10. d; The fourth "Law of Softwa re Evolution" states that there will be no
significant fluctuations in organizational attributes, such as
productivity. [Section 11.1]

11. b; This change is necessary for the system to adapt as it evolves over
time. [Section 11.2]

12. d; This change involves modif ying part of the system to prevent future
faults. [Section 11.2]

13. b; This change is necessary for the system to adapt as its requirements
evolve over time. [Section 11.2]

14. a; This change is necessary to directly correct a fault. [Section 11.2]
15. d; Since a gi ven input will always result in the same behavior there is no

reduction in consistency. (Whether the failure occurs or not depends
entirely on name length.) However, this failure means that the system does
not always produce the desired result (the custome r may not receive a
useful receipt of his or her purchase), which represents a reduction in
integrity. The existence of this problem also reduces the amount of time

the system can run between failures, representing a reduction in
reliability. [Section 12.4]

16. b; Horizontal traceability addresses the relationships within a collection
of work products, such as requirements, design, and code documents which
all describe the same system. Vertical traceability, in contrast,
addresses relationships between the sub components of one such work
product. [Section 11.5]

17. c; Cross - reference generators assist developers by representing the
traceability between various system work documents. If the team had used a
cross - reference generator, it would have been more likely to note that
components of the requirements and design were not represented in the
code. [Section 11.5]

18. g; Boehm's model assesses utility from the viewpoint of three types of
users. First, the customer of the system (the gas station owner) who is
pleased with the utility if the system performs according to his or her
requirements. Secondly, the users of the system (cashiers and gas station
customers) who will be assumed to be pleased with the utility if the
system operation will not change as components are up graded or replaced.
Thirdly, the maintainers of the system who will be pleased if the system
is easy to understand and make changes to, as necessary. [Section 12.4]

19. c; A survey is a retrospective study that attempts to discover the effects
of a method, to ol, or technique on participants. [Section 12.1]

20. b; Surveys are well - suited to the use of retrospective data. However,
because the experimenter cannot manipulate key variables in the
environment, it is difficult to assess the impact of potentially
confound ing factors. For example, the experimenter cannot ensure that the
data collected will be representative of different types of users, since
the experimenter cannot determine the makeup of the population sampled.
[Section 12.1]

21. a; This study suffers from bia s because the assignment of developers to
groups (those who use the tool versus those who don't) may affect the
results. Because all of the developers who are in the "tool use" group
have previously adopted the tool on their own, we might wonder whether th e
tool is somehow better suited to their preferred working style. That is,
the results seen for this group may not be the same as those seen for a
random group of developers. The study does not suffer from homogeneity or
misclassification because the two groups will have different levels of the
factor (tool use) and the experimenter can check whether or not the groups
performed as instructed. [Section 12.2]

22. FALSE; There is an additional pitfall, namely that the study is too short
to expect its results to s cale up directly to a real project. It is
possible that the study would underestimate the usefulness of the tool,
since there may be a learning curve that cannot be overcome in the few
hours allotted to the study. Conversely, the study may overestimate the
usefulness, since the tool may work well for very simple problems but not
apply well to something as complicated as a real project. [Section 12.2]

23. FALSE; The hypothesis given cannot be tested directly because "software
quality" is not quantifiable. That i s, the experimenter will have to
select a way of measuring software quality that can then be tested in the
experiment. [Section 12.2]

24. g; Section 13.2 discuss an analogous situation in which inspection
effectiveness is studied. In interpreting results of t his sort, it is
always necessary to keep in mind alternative explanations for
observations: for example, human subjects don't always use technologies in
the way researchers expect them to, and there are usually large variations
between projects.

25. FALSE; Ide ally, the team leader would attempt to solicit this information
while preserving the anonymity of the respondents, in order to be more
certain that the information is not biased. Also, the unstructured nature
of the interviews does not allow comparison acr oss projects, because there
is no guarantee that the team members will focus on the same issues at
each interview. [Section 12.5]

26. FALSE; A better approach would be to identify issues for discussion
beforehand. This approach would help keep the discussion focused, and
could help make sure only people with relevant experience are invited to
participate in the discussion. [Section 12.5]

27. TRUE; This description matches the guidelines given in the textbook for
successfully publishing the results. In particular, while much benefit
can be gained from distributing such a report to peer developers, managers
are also stakeholders in the software development process and can benefit
from insight into the process. [Section 12.5]

28. d; The CMM identifies important "key proc ess areas" against which
organizations can be assessed by themselves and customers. At the highest
CMM level, the organization is expected to have achieved greater insight
into what goes on within its software development process; it should not
be consider ed a "black box." [Section 12.5]

29. FALSE; The ability to change the software process based on previous
lessons learned is achieved at the highest level of the CMM. [Section
12.5]

30. TRUE; The CMM focuses on improving detection of faults, time to market,
and ope rational failures, but ignores such business quality measures as
customer satisfaction or appropriateness of functionality. [Section 13.3]

31. c; In contrast to the CMM, which evaluates organizations, SPICE evaluates
processes. Both CMM and SPICE define a set of "best" practices for
comparison and attempt to perform the comparison as objectively as
possible. [Section 12.5]

32. g; The people capability maturity model is focused on improving the skills
of individual developers and teams, and does the by helping the
organization build up a quantitative understanding of how it can
contribute to improving the critical skills of its staff. This
quantitative understanding occurs at the second - highest level of maturity,
the "managed" level. The key process areas are concern ed with the skills
of individuals and teams, not the technology they use. [Section 12.6]

33. d; Since this situation deals with the use, not the construction, of
reusable components it represents consumer reuse. Since the subsystem will
have to be modified bef ore being reused, this will be white - box reuse.
[Section 12.4]

34. e; Because early prototypes may be constructed using some of the reusable
functionality, these prototypes could be constructed more quickly with a
reuse library. (Later versions of the system w ill presumably require the
reusable components to be tailored more, so the time savings will not be
as great.) Also, if components are unit tested before being placed in the
library and then reused verbatim, they need not be tested again. However,
creati ng a useful reuse library requires a large initial effort (necessary
for identifying reusable components, making them as reusable as possible,
and then testing them thoroughly) and so may not produce large concrete
benefits in the short term. [Section 12.4]

35. TRUE; The Moeller and Paulish study described in section 13.2 shows
that, in a particular environment, reused components that required some
changes (about 25% of the lines of code) were more fault - prone than
components written from scratch.

36. TRUE; “Testim onial evidence” includes direct observation, second -
hand experience, and opinion. [Section 14.2]

37. FALSE; Credibility of evidence is also related to the credibility of the
source. [Section 14.2]

38. F; Mainstream market adopters are generally only willing to inv est in a
new technology when widespread evidence of its effectiveness and adequate
support and training are already available. [Section 14.2]

Final Exam

The following questions are in reference to a hypothetical “Loan Arranger”
system. The Loan Arranger is meant to assist a “consolidating organization”, a
specific type of business in the financial domain.

Bank customers often borrow money from banks; they promise to repay the loan
plus interest over a certain period of time. Each of these loans is an
ult imately lucrative proposition for the bank, but usually a long period of time
is required for the bank to collect its earnings. Also, there is always the
chance that a borrower will be unable to repay the loan. Consolidating
organizations make money by buy ing loans from banks and reselling them to
investors. Loan analysts, employed by the consolidating organization, work with
investors to select a set of loans that meet their requirements in terms of
time, risk, and initial purchase price.

The Loan Arrange r application has two main types of functionality. First, it
tracks all of the loans that are owned by the consolidating organization. (The
entire set of loans owned by the organization is known as its “portfolio”.) In
order to track loans correctly, the L oan Arranger must interface with the banks
to find out about new loans that should be added to the portfolio, or updates to
loans that are already in the portfolio. Secondly, the Loan Arranger allows a
loan analyst to select a subset of loans from the port folio that match an
investor's desired investment characteristics (these subsets of loans are
referred to as “bundles”). The loan analyst can either select the bundle
manually, or ask the system to select an optimal bundle given the investor's
constraints. The Loan Arranger then updates the portfolio when the bundle is
purchased by the investor. There are numerous constraints on how this
functionality is to be achieved; most importantly, the Loan Arranger must be
usable by more than one analyst at a time.

As a first step in developing the Loan Arranger, the development team meets with
a representative from the consolidating organization to formulate a set of
requirements.

1. Which of the following statements best describe the benefits that the
consolidating o rganization may expect?

a. The requirements process can help the consolidating organization
think more clearly about the performance issues that are necessary
for the Loan Arranger (for example, the maximum amount of time
allowable for a search through the po rtfolio).

b. The requirements process can help the development team communicate
with the representative from the consolidating organization about
the system.

c. The requirements process can help the development team specify the
types of data structures that will be used in the Loan Arranger, in
order to ensure that the performance requirements are met.

d. a and b
e. a and c
f. b and c
g. a, b, and c

2. The development team needs to pick a representation for the requirements.

Which of the following are valid choices and ration ales?

a. Structured Analysis and Design Technique, because it may be useful
to view the system at different levels of detail at different times
(for example, it may be useful to specify the inputs and outputs of
the system before proceeding to design the mech anisms by which loans
are included in bundles to be sold).

b. Warnier diagrams, because they will be helpful in understanding the
different types of loans that must be handled by the system.

c. Data flow diagrams, since this will help the development team
unders tand how the functionality can be used by multiple users
simultaneously.

d. a and b
e. a and c
f. b and c
g. a, b, and c

Mark items 3 through 6 TRUE if they belong in the requirements for the Loan
Arranger, and FALSE if they do not.
3. A description of the skills and knowledge the development team assumes

that the loan analysts already have.
4. A description of how the consolidating organization decides which loans to

buy from banks for inclusion in the portfolio.
5. Constraint s on the maximum allowable time for the system to automatically

suggest an “optimal” bundle of loans for sale to investors.
6. The hardware on which the Loan Arranger will be designed to run.

A requirements review is undertaken to make sure that the requirem ents
adequately describe the system to be built.

7. Which of the following excerpts should be considered valid functional

requirements during the review?
a. “Once the Loan Arranger has automatically generated a bundle, the

loan analyst must be able to modify it manually. The loan analyst
may modify a bundle by either removing loans which are already
included, or adding additional loans.”

b. “A record should be kept for each bank from which loans are
purchased, consisting of the name of the bank, the name of a conta ct
person at the bank, and the phone number of the contact person. The
loan analyst should be able to edit fields that are changeable.”

c. “The expected profit of a fixed - rate loan is the amount of interest
that will be received over the remaining life of the loan. The
formula for computing loan interest is included in Appendix A.”

d. a and b only
e. a and c only
f. b and c only
g. a, b, and c

8. Which of the following can be considered examples of valid nonfunctional

requirements?
a. “If updates are made to any displayed info rmation, the information

is refreshed within five seconds.”
b. “The application must ensure that users are limited to authorized

loan analysts.”
c. “The application must be available for use by a loan analyst during

97% of the business day.”
d. a and b only
e. a and c only
f. b and c only

g. a, b, and c

In questions 9 through 12, review the given excerpt from the requirements and
decide whether it is an adequate requirement or not. If the excerpt is
adequate, mark choice 'e '. If it should be rewritten, mark all the reasons
that apply.

9. ”A borrower can be in one of three states: 'good', 'late', or 'default'. A

borrower is considered to be in 'good' standing if all loans to that
borrower are in good standing. A borrower is con sidered to be in 'default'
standing if any of the loans to that borrower have default standing. A
borrower is said to be in 'late' standing if any of the loans to that
borrower have late standing.”

a. This requirement should be rewritten; it is incorrect.
b. Thi s requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

10. “The format of the reports is at the discretio n of the individual banks.

The Loan Arranger must be easily extensible, so that it can handle new
file formats as necessary.”

a. This requirement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

11. “Each loan must have a loan amount of at least $1000 but not more than

$500,000. There are two types of loans: regular and jumbo. A regular loan
is for any amount less than or equal to $275,000. A jumbo loan is for any
amount over $275,000.”

a. This requirement should be rewritten; it is incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This r equirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

12. ”The user must be advised when a search request is inappropriate or

illegal.”
a. This requirement should be rewritten; it i s incorrect.
b. This requirement should be rewritten; it is ambiguous or

inconsistent.
c. This requirement should be rewritten; it is unrealistic.
d. This requirement should be rewritten; it is unverifiable.
e. This requirement is fine.

After the initial requirements have been defined, the team decides to develop
an initial project plan. First, the risks are identified and assessed.
Determine whether or not each of the statements 13 through 15 is describing a
risk. Answer TRUE if the statement describes a risk, FALSE otherwise.

13. The developers of the Loan Arranger application do not have much

experience in the financial domain.

14. The Loan Arranger application must interface with many external systems.
15. Prototyping is us ed on the Loan Arranger application to make sure that the

team is implementing the correct functionality.

In addition to the risk management activities, cost, schedule and effort
estimations are done. On the past several projects, the team has tried to
use a predictive model to estimate the expected size of the project. The
relative errors of the predictions on the last five projects are shown below.
A relative error of 0 means that there was no difference between the
predicted and actual values. A positi ve relative error means that the
prediction was an overestimate, while a negative value indicates an
underestimate.}

16. As can be seen from the graph, predictions are usually within 15% (plus or
minus) of the actual effort. However, for a given predicti on, it is
impossible to say whether it is an underestimate or an overestimate of the
actual value. Which of the following is a valid assessment of the model?

a. It suffers from bias, which should be assessed with a u - plot.
b. It suffers from noise, and should be assessed using the prequential

likelihood function.
c. It suffers from both bias and noise and should be discarded.

Suppose the COCOMO 2.0 estimation process has been chosen to estimate size
and effort for part of the project.

17. The loan search and selection subsystem of the Loan Arranger application

has 10 screens and 20 reports. Two screens are rated as difficult, 5 as
medium and 3 as easy. Ten reports are rated as difficult, 6 as medium and
4 as easy. Using the COCOMO 2.0 stage 1 model, how many new obj ect points
does the subsystem have? Assume no 3GL components or reuse of existing
components.

a. 210
b. 137
c. 109
d. 30
e. None of the above.

15%

0%

-15%

A E D C B

As part of an on - going investigation into the benefits of a new size
estimation technique, the size of part of the Loan Arrang er application will
be estimated using the experimental technique. The technique has been used
on several projects in the past. The estimates generated by the technique
and the actual values for project size are shown below. The criteria for a
good esti mating technique are: 75% of the estimates should be within 25% of
the actual value; and the mean magnitude of the relative estimated errors
should be less than 25%. Use the table of project size estimates and the
criteria given to answer the questions ab out the estimation technique.

Project Estimate Actual
A 5000 10000
B 25000 20000
C 50000 80000
D 70000 110000
E 40000 45000
F 45000 50000

18. Given the table of estimates and actuals, what is the MMRE? Round to the
nearest 1/100.

a. 0.04
b. 0.14
c. 0.28
d. 0.34
e. 0.43

19. What is the PRED(.25)?

a. 0.25
b. 0.28
c. 0.33
d. 0.50
e. 0.75

20. Based on the criteria for a good estimation technique and the estimate

data gathered so far, can this technique be used to create good estimates
for the Loan Arranger project? (Yes/No)

21. Several es timators use various techniques to estimate the amount of effort

required for the Loan Arranger project. Each estimator arrives at his or
her estimate independently. The independent estimates are 600 person -
months, 650 person - months, 800 person - months an d 750 person months. Using
these estimates, what is the Delphi estimate for this project? Round to
the closest month.

a. 700 person - months
b. 684 person - months
c. 648 person - months
d. 600 person - months
e. 523 person - months

22. TRUE or FALSE: When the Delphi method is used and participants are

allowed to iterate through the process several times, group dynamics
drives the group consensus to converge close to the median of the
estimates.

23. If the Delphi estimate for effort is used and there are 20 team members
working on the project, how many months will the project take? Assume all
team members can work concurrently. Round to the closest month.

a. 26
b. 30
c. 32
d. 34
e. 35

24. If there are 20 team members assigned to the project team, how many

potential lines of communication exist?
a. 20
b. 45
c. 190
d. 400

To build a schedule, the critical path method is used. The activity graph
(shown below) is used to depict the dependencies among the activities and
milestones of the Loan Arranger project. The nodes of the graph represent the
milestones of the pro ject. The edges linking the nodes represent the
activities. The numbers adjacent to the edges represent the number of days
required for the activity. For example, it will take 5 days to complete the
activity starting at milestone A and ending in milesto ne C. Use this
activity graph to answer the following questions:

25. Which of the following is a critical path from milestone A to milestone K?
a. ACEGHJK
b. ACEGHIK
c. ABDFHJK
d. ABDFHIK

26. What is the slack time for the activity starting at milestone F?

a. 4
b. 5
c. 16
d. 21

B D F I

E J

A H

C G

2

7

5

6

4

2

K

3 10

10

1

10
5

27. What is the length of the critical path identified in question 25?

a. 28
b. 32
c. 33
d. 37

28. Which milestones are precursors to J?

a. D
b. E
c. I
d. D and E
e. D and I
f. All of the above

The development team decides that the next step is to create a conceptual a nd
then a technical design.

29. The conceptual design is felt to be of value because it will allow the

consolidating organization to check:
a. How its policy of allowing banks to specify the format of their

reports will affect the system.
b. What functions the loan analysts can access at any given time.
c. Whether the reports generated by the system will match the report

format already used by the organization.
d. a and b
e. a and c
f. b and c
g. a, b, and c

30. Which of the following are valid rationales for creating a separate

tech nical design?
a. The conceptual design will be useful for communicating with the

representative of the consolidating organization; it may contain
financial jargon but not implementation details or programming
jargon.

b. The conceptual design will not include det ailed financial formulas
so it will be independent of the implementation.

c. The technical design should contain more detail about what data
structures will need to be used in order to meet the performance
requirements.

d. a and b
e. a and c
f. b and c
g. a, b, and c

31. The team has to decide on a general approach to creating the design.

Which are NOT valid choices and rationales?
a. Data - oriented decomposition, because the data structures are central

to the design of the system, and many aspects of the data structures
are hi ghly constrained by the requirements.

b. Modular decomposition, because the system functions are highly
interdependent, so the system is not easily divisible into separate
subsystems.

c. Event - oriented decomposition, because the type of functionality
available t o the loan analyst at any given time will depend on the

current state of the system, as determined by the actions of all
loan analysts using the system.

d. a and b
e. a and c
f. b and c
g. a, b, and c

32. The team leader decides that the logical next step is to decide on an

architectural style for the system. Which of the following are valid
choices and rationales?

a. Object - Oriented, since this design style would allow certain
features to be updated (for example, the data structures holding the
bank information) while requ iring no changes to other components in
the system.

b. Client - Server, since this design style would be a convenient way to
allow many different loan analysts to view the same data in
different ways.

c. Repository, since it will be convenient to view the system a s a
central data store (the portfolio of loans) with mechanisms for
storing, retrieving, and updating the data.

d. a and b
e. a and c
f. b and c
g. a, b, and c

33. Since the development team has some experience with concurrency from a

previous project, the technology inv olved in this system is well
understood. The team has decided on an Object - Oriented design which breaks
the system into several components, and the team members are fairly
confident they understand how each of the components will achieve the
required funct ionality. On the other hand, it is not yet clear how the
components will interact with each other and with external systems. A
reasonable strategy for completing this design would therefore be:

a. Prototyping

b. Fault - tree analysis
c. Design by contract

This i s the class diagram for the initial high - level design of the Loan
Arranger system.

34. Which of the following best describes the amount of coupling for class

Loan, relative to the other classes in the high - level design shown above?
a. High coupling
b. Low coupling
c. Can't tell

35. Which of the following best describes the amount of cohesion for class

Loan, relative to the other classes in the high - level design shown above?
a. High cohesion
b. Low cohesion
c. Can't tell

36. Based on what is known about the level of cohesion and coup ling for class

Loan, it is reasonable to assume that:
a. It will probably be easier to modify than class Borrower.
b. It will probably be harder to modify than class Borrower.

 Bank

Bundle

Loan Arranger

Loan Borrower

c. No conclusions can be drawn about the ease of modification.

37. After an internal review , some of the designers want to add more
classes to the high - level model. Which of the following are appropriate
for a high - level, conceptual design?

a. Classes “Variable Rate Loan” and “Fixed Rate Loan,” subclasses of
“Loan” which are handled differently by the consolidating
organization.

b. Class “Acceptance Dialog,” which controls the window that appears
on the screen when a new loan can be purchased by the consolidating
organization.

c. Class “Identification Number,” which consolidates the
implementation for uni que loan ID numbers in the system.

d. A and B
e. A and C
f. B and C
g. A, B, and C

38. To estimate the amount of effort that will be needed to construct
the system, the team could look at which of the following metrics during
system design?

a. Lack of cohesion of methods
b. Number of key classes
c. Number of support classes
d. A and B
e. A and C
f. B and C
g. A, B, and C

39. TRUE or FALSE: The Weighted Methods per Class (WMC) metric is
useful for identifying classes that are potentially reusable classes.
These classes are likely to be the ones wit h the highest values of the
metric.

40. TRUE or FALSE: Number of Children (NOC) is useful for identifying
those classes on which greater testing effort should be spent. These are
the classes with high values for the metric.

41. TRUE or FALSE: Response for a Class (RFC) is useful for identifying
those classes on which greater testing effort should be spent. These are
the classes with high values for the metric.

42. The following figure represents the state diagram created during
design for class “Borrower.” Which of th e following statements are true?

a. Regardless of the state of the borrower, if any loan is default,
the borrower is considered in default status.

b. Regardless of the state of the borrower, if any loan is late, the
borrower is considered in late status.

c. Regardl ess of the state of the borrower, if any loan is good, the
borrower is considered in good status.

d. A and B.
e. A and C.
f. B and C.
g. None of these.

43. TRUE or FALSE: It cannot be determined what state an object of type
Borrower will be in when it is created.

As a next step, the high - level design is expanded into a low - level design.

44. In the low - level design, the portfolio is represented as a central data
store. This data store is accessed (and potentially modified) by a number
of other system components. For example , one component updates the data
store when new information is received from a bank, while another
component searches the data store for loans to create a bundle. The
relationship between these components and the data store is best described
as:

a. Content co upled
b. Common coupled
c. Control coupled
d. Stamp coupled
e. Data coupled

45. Which of the following items of information are NOT appropriate for

inclusion in the final low - level design?
a. The format of the screens that will be used by the loan analyst
b. The format of the reports the system will generate for use by the

loan analyst
c. The format and storage specifications of archival reports
d. None of the above (all are appropriate)
e. a and b
f. a and c
g. b and c
h. a, b, and c

From previous projects, the team leader has realized that th e team typically
experiences many problems in the implementation phase due to poor decisions

Good
Status

Default
Status

Late
Status

A loan is default

A loan is default

A loan is late

All loans are good

A loan is default
A loan is late

All loans are good

made in the design phase. To address this problem, the team leader decides to
make a process change: the addition of critical design reviews to the team's
software development process.

46. In preparing for the critical design review, which of the following would

be appropriate actions for the team leader?
a. Invite program designers to the reviews, instructing them to gain a

better understanding of the design.
b. Invite prog ram designers to the reviews, instructing them to

critique the existing design.
c. Require the design to be redone and schedule added reviews, if major

problems are discovered during the review.
d. a and b
e. a and c
f. b and c
g. a, b, and c

47. The critical design reviews discussed in question 46 require a lot of

extra time from the developers: for planning, preparing for, and then
actually holding the meetings. The team leader would like some empirical
indication whether this additional investment in design time actually pays
off. His idea is to introduce critical design reviews on the Loan Arranger
project only, and to compare the results on this project to the results on
the development team's previous projects. As much as possible, he intends
to make sure that everything else about the Loan Arranger project is
typical of the kinds of projects the team usually works on. If key factors
on the Loan Arranger are not typical for other projects of this team, then
he will at least document those key fac tors and reason about their
possible influence on the results. This type of study would be best
described as a:

a. Feature analysis
b. Case study, with sister projects
c. Case study, with baseline
d. Case study, with random selection
e. Survey
f. Formal experiment

48. A benefi t of the type of study identified in question 47 is that:

a. Any differences in the implementation phase can be directly
attributed to the use of critical design reviews.

b. The more typical both the Loan Arranger project and the compari son
projects are, the more confidence there is that differences in the
implementation phase are due to the use of critical design reviews.

c. No conclusions can be drawn about the effects of critical design
reviews, but it can be determined how software devel opers on this
team will react to the new process.

Once the design of the system has passed the critical design review, the
project moves into the implementation phase.

49. To best implement the system, the development team has to give some

thought to the typ e of maintenance changes the Loan Arranger system will
eventually require. Since few (if any) changes are expected in the way
the consolidating organization tracks and bundles loans, the team should:

a. Classify the system as an S - type system.
b. Classify the s ystem as a P - type system.
c. Classify the system as an E - type system.

d. Recognize that this system is likely to require no maintenance
activities.

During implementation, several problems occur. Identify the problems as
errors, faults or failures.

50. A developer implementing a component to keep track of loan updates thinks

that the only modifications to loans will be additions and deletions of
loans. The developer doesn't realize that interest rates on loans may
change also.

51. A loan analyst notices that the loan total (original loan amount +
interest) displayed on the screen is incorrect. The total value is less
than the original loan amount.

52. In the code for computing loan profit, the initial purchase price is added
to the profit. It should be subtracted.

53. When a loan analyst conducts three optimal bundle searches using different
search criteria each time, the same set of loans is always returned. Not
all of the loans returned match the criteria specified by the loan
analyst.

While implementing the Loan Arrange r, the development team finds out it is
likely that they will be doing additional projects in the financial domain.

54. As part of the Loan Arranger, the team implements a module that calculates

the interest that will be paid on a fixed - rate loan. Because it is likely
that any future projects in the financial domain will also need to use
this function, the module is designed to be reusable, with clearly defined
and simple inputs and outputs. It is intended that any future projects can
thus reuse the module dir ectly, as long as they know the correct inputs to
send and the correct output format to expect. This is an example of:

a. Producer, black - box reuse
b. Producer, white - box reuse
c. Consumer, black - box reuse
d. Consumer, white - box reuse

55. Suppose that a future project do es in fact have need of a module to

calculate fixed - rate interest. Which of the following problems may stand
in the way of effectively reusing the module described in question 54?

a. The developers of the future project will have to s earch through all
of the components available for reuse, and may not find the module.

b. The developers of the future project may not be properly trained,
and may not even recognize the situation as a potential for reuse.

c. The developers of the future project may not be motivated to reuse,
and may end up re - implementing the functionality from scratch.

d. a and b
e. a and c
f. b and c
g. a, b, and c

When implementation of a module is complete, it undergoes code review. In the
following program fragments from the Loan Arran ger application, identify
violations (if any) of good programming style that should be caught during
review.

Use the following choices in your response:}
(a) Generality
(b) Efficiency

(c) Formatting
(d) Documentation
(e) No violations

56. void PrintLoanList(LoanList * loans){

LoanList * l = loans;

while (l){
cout << * l << “ \n” ;
l = loans->next;
}
}

57. float ValidateLoans (LoanList &bundle, LoanList &loans){
/* Validate and calculate the total profit of the loans in the bundle. * /
/* If a loan in the bundle does not exist in the loans list, * /
/* return -1. * /
/* If all l oans in the bundle exist in the loans list, * /
/* return the total profit for all l oans in the bundle. * /

float total = 0;

for (int i=0; i < bundle.getcount(); i++)
if (!loans.Exists(bundle[i])) return -1;
for (int j=0; j < bundle.getcount(); j++)
total += bundle[i].getprofit();
return total;
}

58. /* if the loan amount is greater than 275K, it is a jumbo loan */

if (l->getamount() > 275){
type = JUMBO;
if (l->getprofit() > 10)
/* if the profit is greater than 10K, add the loan to the bundle */
bundle->addloan(l);
}
else /* a regular loan */
type = REGULAR;

During code reviews of the Loa n Arranger, the following faults were
identified. Classify the type of fault in each code fragment.

59. float ComputeProfit(float initial, float rate){

float profit;

profit = (1+rate)* initial + initial;
return profit;
}

In this fragment, the function used to calculate the profit is incorrect.

a. initialization fault
b. computation fault

c. precision fault
d. b and c only
e. a and b only
f. none of the above

60. LoanList::~LoanList(){
/* delete all of the elements in the list * /
for (int i=1; i < count; i++)
delete list[i];
}

I n this fragment, the first item of the list (list[0]) is not deleted.

a. initialization fault
b. computation fault
c. precision fault
d. b and c only
e. a and b only
f. none of the above

61. Loan *loans[10];

for (int i=0; i<=10; i++) loans[i]->setprofit(0);

In this fragment, the loop includes an operation on loans[10] which is not
part of the array.

a. initialization fault
b. precision fault
c. capacity or overload fault
d. a, b, and c
e. none of the above

62. One module of the Loan Arranger describes its functionality by means of

the following assertions:
A1: (T is an array) & (T is of size N) & (S = 0)

Aend: (T' is an arra y) & (T' is of size N) & S' = ∑ = 1i

N
T(i)

Choose the statement that best describes what is happening between the two
assertions.

a. The values of array T are be ing assigned to the array S'.
b. The values of array S are being added to the values of array T'.
c. The values of array T are being added to the values of array S'.
d. The sum of the values of array T are being assigned to S'.
e. None of the above.

When implementati on of the Loan Arranger is nearly complete, testing begins.

The figure below shows the component hierarchy of the Loan Arranger
application. Use this figure to identify the testing strategy indicated by
the sequences given. The “;” is used between test sets and each test set is
represented as a comma - separated list. For example, the sequence
{F,G};{B,F,G} means that components F and G were tested first. Then,
components B, F and G were tested.

63. {A};{A,B,C,D,E};{A,B,C,D,E,F,G,H,I,J,K}
a. Top- down tes ting
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

64. {F};{G};{H};{I};{J};{K};{B,F,G,H};{C};{D};{E,I,J,K};{A,B,C,D,E,F,G,H,I,J,K

}
a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

65. {A};{F};{G};{H};{I};{J};{K};{B,F,G,H};{C};{D};{E,I,J,K};{A,B,C,D,E,F,G,H,I

,J,K}
a. Top- down testing
b. Bottom - up testing
c. Sandwich testing
d. Big - bang testing
e. Modified top - down testing

The following issues were caught during testing. For questions 66 through 69,
identify the type of testing most likely to have discovered the defect.

66. In the component that searches for the optimal loan bundle, the investor's

desired loan characteristics are not initialized properly. The parameter
containing these characteristics is ignored. Which type of testing would
most likely have exposed this defect?

a. unit testing
b. integration testing
c. acceptance testing
d. installation testing
e. performance testing

67. The getBundle method in the Bundle c omponent requires a pointer to an

array to be passed as an argument, but a call to the getBundle method in
the Reports component passes the value of an array instead. Which type of
testing would most likely have exposed this defect?

a. performance testing of the Bundle and Reports components
b. installation testing of the Reports component
c. unit testing of the Bundle component
d. integration testing of the Bundle and Reports components
e. acceptance testing of the Bundle and Reports components

B

A

E D C

F G I H K J

68. The bundle selector is su pposed to allow the analyst to choose manually
whether or not a loan should be included in the bundle, but the manual
modification of bundle selection has not been implemented. Which type of
testing would most likely have exposed this defect?

a. unit testing
b. integration testing
c. performance testing
d. acceptance testing
e. function testing

69. The Loan Arranger has to interface with another external banking system.

The interface to the external system has not been specified correctly.
Which type of testing would most likely have exposed this defect?

a. integration testing
b. installation testing
c. performance testing
d. acceptance testing
e. function testing

70. The missing functionality described in question 68 is a serious
defect in the system. It will ta ke a significant amount of effort to
correct the problem by doing redesign, recoding, and retesting. The team
leader is not sure how this can be accomplished in the time remaining
before the due date, or even if it is still possible to make that date.
In t rying to decide how to address this problem he thinks immediately of
a system that was under development last year and also had significant
missing functionality. The solution used on that system, of going
straight to implementation of the new functionalit y without spending time
on a redesign, might also work in this case, with some adaptations to
take into account the fact that the current development team is much less
experienced. Reasoning in this way is known as “anchoring and adjustment”
and potential problems are that:

a. The “anchoring” dominates and there is too little adjustment of the
previous solution to the specific circumstances of the new problem.

b. Arguing from analogy is always inherently dangerous.
c. More suitable analogies might be overlooked beca use they are less

recent.
d. A and B
e. A and C
f. B and C
g. A, B, and C

The bundle selection functionality is expected to be very complex, and there
is concern about the reliability of this software. It is decided that faults
will be seeded in the code to estimate the remaining faults. Two test teams
will test the software.

Suppose 100 faults have been seeded in the code. During testing by the first
team, 120 faults are detected. Sixty of the detected faults are seeded
faults.

71. What is the Mills estimate for the percentage of remaining, non - seeded

(indigenous) faults in the code?
a. 10%
b. 40%
c. 50%
d. 60%

e. It is impossible to determine from the information given.

72. What is the Mills estimate of the total number of indigenous faults
remaining?

a. 7.5
b. 10
c. 40
d. 50
e. 60
f. It is impossible to determine from the information given.

Suppose the same code is given to the second test team. This team finds 80
seeded faults and 70 non - seeded faults. 90 of the faults found by this team
were also found by the other team.

73. Using the numbers for the second team, what is the Mills estimate for the

total number of indigenous faults remaining?
a. 0
b. 17.5
c. 20
d. 87.5
e. It is impossible to determine from the information given.

74. What is the effectiveness of the second test group?

a. 30%
b. 40%
c. 60%
d. 85%
e. It is impossible to d etermine from the information given.

75. What is the effectiveness of the first test group?

a. 25%
b. 42%
c. 64%
d. 75%
e. It is impossible to determine from the information given.

76. Based on the effectiveness of both test groups, what is the estimate for

the total number of faults?
a. 200
b. 100
c. 78
d. 32
e. It is impossible to determine from the information given.

77. Suppose 49 faults have been seeded into a component. Testing of the

component has uncovered 45 of the seeded faults without uncovering any
additional non - seeded faults. Wha t is the level of confidence that the
component is fault - free?

a. 74%
b. 80%
c. 85%
d. 92%
e. None of the above.

After testing is complete, the system is delivered to the customer. Once it
has been in operation for some time, a number of problem reports are
returned.

78. Consider the following excerpts from problem reports filed for the Loan

Arranger. In which type of report, discrepancy or fault, does each item
belong? Answer fault report or discrepancy report.

a. “The requirements document states that after the search fo r
desirable loans returns a list of loans, the user should be able to
remove or add loans from the list. The current software does not
allow the user to modify the list after the search.”

b. “After submitting a search query for desirable loans, the results
never came back. There should be a time out on the search and/or a
message indicating the search is still in progress.”

c. “The search criteria are being ignored. There are two possible
problems. The criteria may not be initialized correctly or the
updates to the criteria may not be working properly. Check the
constructor and the SetCriteria method of the Criteria class.”

Other ideas for changes to the system are identified by the development team.

79. In order to deliver the system on time, the development t eam implemented a

straightforward, brute force algorithm for creating bundles. This
algorithm is sufficient for the consolidating organization's current needs
but will not be able to meet the performance requirements if the volume of
business increases. Th is situation:

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no maintenance to be performed.

80. If the brute force algorithm described in question 79 does cause the Loan

Arranger system to not meet the performance requirements, this situation
would be an example of:

a. An exception
b. An error
c. A fault
d. A failure
e. None of the above

81. One of the banks has defects in its own software and sometimes sends data

to the consolidating organization in which some of the records are not in
the correct format. When this occurs the Loan Arranger alerts the loan
analyst and none of the data from this bank is updated in the portfolio.
This situation:

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Should lead to a preventive change.
e. Should require no maintenance to be performed.

82. If the Loan Arranger receives bad data and reacts as described in question

81, this situation would be an example of:
a. An exception
b. An error
c. A fault

d. A failure
e. None of the above

83. A mistake is noticed in the algorithm that computes the credit standing of

loan recipients. That is, the value of a loa n may be incorrectly computed
because it is assumed to be a more or less risky proposition for
investment than it actually is. This situation:

a. Should lead to a corrective change.
b. Should lead to an adaptive change.
c. Should lead to a perfective change.
d. Shoul d lead to a preventive change.
e. Should require no maintenance to be performed.

84. The erroneous module from question 83 (that computes credit standing)

suffers from:
a. An exception
b. An error
c. A fault
d. A failure
e. None of the above

85. Upon inve stigation, it is found that the problem described in question 83

results from a misconception in the original requirements. That is, the
development team misunderstood the algorithm that the representative from
the consolidating or ganization described. Then, this misunderstood
algorithm was carried through the requirements, design, and implementation
phases. This problem might have been discovered earlier if the team had
used an appropriate:

a. Linker
b. Debugging tool
c. Cross - reference ge nerator
d. Static code analyzer
e. None of the above

Based on lessons learned during the Loan Arranger project, the team leader
would like to invest further in process improvement.

86. Because he feels the need for continuing to improve the software

development pr ocess, the team leader has decided to use CMM as a guide for
process improvement. Which of the following represent potential problems
that the team may encounter with CMM?

a. It is not possible to customize the CMM to any special needs of the
organization.

b. The team might feel it necessary to invest in key process areas from
a maturity level 2 or 3 levels higher than the organization's
current ranking.

c. The assumption behind the CMM is that every key process area is
needed by the organization; in reality, this a ssumption might not be
correct.

d. None of the above represent real problems with the CMM.
e. a and b
f. a and c
g. b and c
h. a, b, and c

87. Which of the following are reasonable rationales for choosing CMM over

another process maturity model?

a. Unlike SPICE, CMM clearly de fines a set of desirable practices and
processes.

b. Unlike in ISO9000, software measurement is a strong and explicit
component of CMM.

c. Unlike both SPICE and ISO9000, the goals of CMM can be easily mapped
to concrete questions and metrics.

d. a and b
e. a and c
f. b a nd c
g. a, b, and c

Final Exam Answers

1. d; Choice C is false because the requirements cover only what
functionality is to be implemented, not how. [Section 4.1]

2. d; Data flow diagrams describe how data are input, processed, and output
by the system but do no t contain any mechanism for describing concurrency.
However, SADT does allow multiple views of the system at different levels
of detail, and Warnier diagrams do help organize the relationships among
data. [Section 4.5]

3. TRUE; The requirements specification should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

4. FALSE; The requirements specification should contain anything relevant to
how the system will interact with its environment. The requirements should
descri be what data are input to the system; why those data are of interest
to the organization is outside the scope of the requirements. [Section
4.2]

5. TRUE; The requirements specification should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

6. TRUE; The requirements specification should contain anything relevant to
how the system will interact with its environment. [Section 4.2]

7. e; Choice B is ambiguous because it mentions that some fields are
changeable but does not m ention which ones. [Section 4.3]

8. g; Nonfunctional requirements describe constraints on the system;
typically, these constraints limit developers' choices in constructing the
system. [Section 4.1]

9. b; This requirement is ambiguous, because if a borrower has both default
and late loans it is not clear whether the borrower is in 'default' or
'late' status. [Section 4.3]

10. d; The phrase 'easily extensible' is unverifiable. How can extensibility
be measured? [Section 4.3]

11. e; The formula given can be easily verified for correctness, and is not
ambiguous. [Section 4.3]

12. b and d; This requirement is ambiguous because there is no definition
given of “inappropriate” and “illegal”. As such, this condition cannot be
tested, since it is unclear what set of inputs are intende d to yield
advice from the system. [Section 4.3]

13. TRUE; Lack of experience is a risk. [Section 3.4]
14. TRUE; Interfacing with externally developed systems is a risk. [Section

3.4]
15. FALSE; Prototyping is a risk control. [Section 3.4]
16. b; Predictions are noisy whe n they fluctuate more wildly than the actual

measure.[Section 13.1]
17. b; (2*3) + (5*2) + (3*1) + (10*8) + (6*5) + (4*2) = 137 [Section 3.3]

18. c; 2825.0
6

50000

5000

45000

5000

110000

40000

80000

30000

20000

5000

10000

5000

=
+++++

=MMRE [Section

3.3]

19. d; Half of the estimates are within 25% of actual values. [Section 3.3]

20. No; using criteria MMRE < 0.25 and PRED(0.25) > 0.75. [Section 3.3]

21. a; 700 person - months is the average of the four estimates [Section 3.3]

22. FALSE; Although the method tends to produce convergence on the median
estimate, a strong personality in the group (or other group dynamics
issues) can push the group consensus toward another value. [Section 14.3]

23. e; 35 months [Section 3.3]

24. c; (n(n - 1))/2)= 20(19)/2 = 190 lines of communication [Section 3.2]

The following table can be used to answer questions 25 to 28:

Activity Earliest

Start
Time

Latest
Start
Time

Slack

A 1 1 0
B 8 13 5
C 6 6 0
D 10 15 5
E 9 9 0
F 16 21 5
G 19 19 0
H 23 23 0
I 24 28 4
J 33 33 0
K(finish) 37 37 0

An activity label in the table should be read, “the activity beginning at
milestone $<label>$.” For example, the activity beginning at milestone B has
an earliest start time of 8.

25. a; ACEGHJK is the critical path. In the table above, it represents the

path with 0 slack time from start (A) to finish (K). [Section 3.1]

26. b; 5 is the slack time for the activity starting at milestone F. [Section
3.1]

27. d; 37 is the length of the critical path. [Section 3.1]

28. d; I is not a precursor to J [Section 3.1]

29. g; The conc eptual design addresses issues such as what the system looks

like to users, where the data comes from, and what happens to the data in
the system. [Section 5.1]

30. e; The conceptual design should be able to be understood by the customer;
it should therefore c ontain financial information but not implementation
details. (There is not necessarily any connection between financial
formulas and implementation.) The technical design should include more
details about how the system is to be implemented. [Section 5.1]

31. b; If system functions are highly interrelated, it will be difficult to
separate the system into components for which the internal organization
and the relations to other components can be described. [Section 5.2]

32. f; Unlike those in pipe - and - filter systems , Object - Oriented components are
not completely independent; certain changes to a component can require
changes to all components that call it. [Section 5.3]

33. c; Design by contract views a software system as a set of communicating
components, which may be a useful way to think of the components in the
Object - Oriented design. Design by contract also places the most emphasis

on how components interact (specifying the preconditions, postconditions,
and invariants that exist when one component calls another). Si nce the
interaction of components is an area that will be important to address in
this design, design by contract appears the best choice. [Section 5.6]

34. a; Coupling measures the amount of dependence among components. Since
class Loan interacts with 4 other classes (at least double the number for
any other class), class Loan has a high degree of coupling. [Section 5.5]

35. c; Cohesion measures how related the internal parts of a component are.
Since this figure gives no details about the internal structure of
co mponents, no conclusions about cohesion can be drawn. [Section 5.5]

36. b; The high degree of coupling for class Loan leads to the possibility
that a change to this class may require changes in many other parts of the
system. A change to class Borrower, on the other hand, has the potential
to affect only one other class. Additionally, components are often easier
to understand if they are not intrinsically tied to others. Thus for many
types of changes it is reasonable to assume that modifications to class
Loan will be more difficult. [Section 5.5]

37. A. The high - level design should describe real - world entities in the
problem, not the details of the solution. [Section 6.5]

38. B. Number of key classes can be measured during system design to
get an idea of the size of th e system, while number of support classes
cannot be accurately measured until program design. The “lack of cohesion
of methods” metric is useful for finding complex classes that can benefit
from additional care in construction, not for estimating system si ze.
[Section 6.7]

39. FALSE. Classes with large numbers of methods are likely to be more
application specific, limiting the possibility of reuse. [Section 6.7]

40. TRUE. The number of children gives an idea of the potential
influence a class has on the design. If a class has a large number of
children, it may require more testing of the methods in that class.
[Section 6.7]

41. TRUE. If a large number of methods can be invoked in response to a
message, the testing and debugging of the class become more complicated
since the class requires a greater level of understanding on the part of
the tester. [Section 6.7]

42. A. According to the diagram, once in default status, the borrower can
never return to good or late status. [Section 6.5]

43. FALSE. The black dot representing the sta rt state leads to the state
marked “Good Status,” meaning that it will be the default state for any
new object of this type. [Section 6.5]

44. b; Common coupling exists when the design is organized such that data are
accessible from a common data store, and po tentially multiple components
can access that data. [Section 5.5]

45. d; The design should describe the system in such a way that it can be
validated whether the system will meet the needs of the organization.
These needs should include not only day - to - day use but longer term needs
such as archiving. [Section 5.8]

46. g; Program designers are present both to critique the design and to better
understand it, so that they can then derive their more detailed program
designs from it. If major problems are identified, th e design is redone.
[Section 5.7]

47. c; This study is a case study, since key factors that may affect the
outcome are identified, documented, and controlled as much as possible.
Since the study will be conducted on a single project that has real
constrains an d deadlines, we can assume that the level of control of key
variables will not be high enough to make this a formal experiment. Since
the project in which the new process is being evaluated will be compared

to a set of past projects that are meant to be ty pical, the case study
makes use of a baseline for comparison purposes. [Section 12.1]

48. b; The aim in this type of study is to select a subset of past projects
for comparison that are as similar as possible to the one using the new
process. This selection pr ocess helps ensure that any differences are due
to the new process and not other sources of variation. [Section 12.1]

49. b; The Loan Arranger is a P - type system, since the problem (tracking and
bundling loans) can be described directly and completely, and ha s an exact
solution. Unlike an E - type system, the system is not embedded in the
environment, that is, the practical abstraction of the problem is unlikely
to change due to an improved understanding resulting from the solution. As
a P - type system, increment al change is possible in order to improve the
solution. [Section 11.1]

50. error; These statements are describing a misconception on the part of the

developer. [Sidebar 1.1]
51. failure; These statements describe a departure from the required behavior.

[Sidebar 1 .1]
52. fault; These statements describes a mistake that has been manifested in

the code. [Sidebar 1.1]
53. failure; This is an example of the system performing incorrectly. [Sidebar

1.1]
54. a; This example is of producer reuse since reusable components are being

cre ated. The situation described also illustrates black - box reuse since
the module is meant to be reused without modification. [Section 12.4]

55. g; The need to search through large repositories of components to find the
best one for a particular reuse need is on e of the biggest obstacles to
effective reuse. Section 12.4 of the textbook describes some work in
component classification that attempts to solve this problem. It also
describes experiences at Raytheon and GTE, and how these organizations
have designed th eir reuse programs to avoid the pitfalls described in
choices B and C.

56. d; No documentation

57. b; The two loops can be combined to make this code more efficient.

58. c; The else clause matches with the first if clause. The formatting of

this code makes it misle ading.

59. b; Because the equation to calculate the profit is incorrect, the fault is
a computation fault. [Section 8.1]

60. a; The variable i is initialized incorrectly. [Section 8.1]

61. c; list[10] is out of the defined array boundary [Section 8.1]

62. d; [Section 8.3]

63. a; top - down testing [Section 8.4]

64. b; bottom - up testing [Section 8.4]

65. c; sandwich testing [Section 8.4]

66. a; unit testing; This defect can be isolated to a single function in a
single component. Unit testing should uncover this type of defect.
[Sec tion 8.2]

67. d; Since this defect involves the interface between the two components,

integration testing of the Bundle and Reports components should detect the
defect. Unit testing of the Bundle component alone would not uncover the
defect since the defect exists in the Reports component. [Section 8.2]

68. e; Function testing is used to determine if the functions described in the

requirements specification are actually implemented in the system.
[Section 8.2]

69. a; Since the defect deals with interfaces, integrat ion testing should

detect the defect. [Section 8.2]

70. E; Arguing from analogy is a particularly useful way of learning from
past experiences, but care must be taken not to “anchor” on the wrong
past experience or to insufficiently “adjust” to the new circum stances.
[Section 14.3]

71. b; The percentage of indigenous faults remaining is equal to the

percentage of seeded faults remaining. (1 - 60/100) = .4 [Section 8.8]

72. c;

faultsindigenous

foundfaultsindigenous

faultsseeded

foundfaultsseeded

_

__

_

__ =

foundfaultsseeded

foundfaultsindigenousfaultsseeded
faultsindigenous

__

_

×=

100
60

60100
_ =×=faultsindigenous

indigenous_faults_remaining = 100 – 60 = 40
[Section 8.8]

73. b;
indigenous faults = 100*70/80 = 87.5
indigenous faults remaining = 87.5 - 70 = 17.5
Section 8.8

74. c; effectiveness = overlapping faults/faults found by the second group
effectiveness = 90/150 = 60%
[Sectio n 8.8]

75. d; effectiveness = 90/120 = 75% [Section 8.8]

76. a; total faults = 90/(.6 * .75) = 200 [Section 8.8]

77. e;

9.0

45

50

44

49

=















=C

[Section 8.8]

78.
a) discrepancy report; This description describes a difference

between the requirements and the implement ation. [Section
9.8]

b) discrepancy report; This description describes a problem
from the user's point of view. [Section 9.8]

c) fault report; The description of the problem includes
information from the developer's point of view. [Section
9.8]

79. d; This change i nvolves modifying part of the system to prevent future

faults. [Section 11.2]
80. d; A failure is an instance during system operation in which system

behavior deviates from expectations. [Section 5.5]
81. e; This type of response may or may not be the optimal way of handling

such a situation (since discarding the entire report potentially discards
valid records). However, since the response is consistent and reliable, it
does not represent a defect in the system unless it somehow fails to meet
the needs of the cust omer. [Section 11.2]

82. a; The description provided illustrates the Loan Arranger handling an
exception, that is, responding to a situation that is counter to the
intended operation of the system. [Section 5.5]

83. a; This change is necessary to directly correct a fault. [Section 11.2]
84. c; A fault is a defect in a software product, resulting from some human

error. [Section 5.5]
85. e; Choices A through D are all tools that can help catch defects

introduced after the requirements stage. To catch the faulty algorithm, a
way of ensuring requirements correctness would have been necessary (for
example, requirements reviews). [Section 11.5]

86. f; Both choices A and C are true statements about the CMM. The same key
process areas are recommended for every organization. [Section 12 .5]

87. b; Choice B is the only true statement. SPICE also defines a specific set
of desirable practices, and both SPICE and CMM have goals that can be
mapped to questions and metrics. [Section 12.5]

